IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3843-d1136883.html
   My bibliography  Save this article

The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District

Author

Listed:
  • Sergey Zhironkin

    (Department of Trade and Marketing, Siberian Federal University, 79 Svobodny Av., 660041 Krasnoyarsk, Russia
    Department of Open Pit Mining, T.F. Gorbachev Kuzbass State Technical University, 28 Vesennya St., 650000 Kemerovo, Russia)

  • Fares Abu-Abed

    (Department of Electronic Computers, Faculty of lnformation Technologies, Tver State Technical Unversity, 22 Afanasiya Nikitina Emb., 170026 Tver, Russia)

  • Elena Dotsenko

    (Department of Political Economy and History of Economic Science, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia)

Abstract

This article presents a study of the specific features and development factors of renewable energy in macro-regions that combine extractive and industrial clusters with rural, sparsely populated areas. While in some countries—leaders in energy transition (the EU, China)—the growth of investments in solar, wind, and hydropower production is taking place systematically within the framework of an increasing number of national and international strategies and programs, in the Russian Federation there is a lack of renewable generation capacity. Particular difficulties are experienced in regions that, on the one hand, have a developed fuel and raw material complex and, therefore, fuel generation (which makes a significant contribution to global greenhouse gas emissions), and, on the other hand, many rural, sparsely populated areas that are in need of new distributed generation. The aim of the study is to analyze the factors of transition to renewable energy in mineral-resource regions, such as the Siberian Federal District (Siberia), as well as to identify measures to enhance their effectivity. The article shows the place of Siberia in the national energy system and considers the factors related to its energy transition in detail, e.g., the saturation with main powerlines, the control of air pollution caused by fuel energy facilities, its provision with fuel resources, investments in renewable energy, and ways of improving the health and well-being of the local population. Attention is drawn to the challenges and obstacles related to the development of renewable energy in the Siberian Federal District, associated, on the one hand, with Russia’s lagging behind other countries in the dynamics of energy transition, and on the other hand, with external and internal technological and investment restrictions.

Suggested Citation

  • Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3843-:d:1136883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    2. Nuno Carlos Leitão & Daniel Balsalobre-Lorente & José María Cantos-Cantos, 2021. "The Impact of Renewable Energy and Economic Complexity on Carbon Emissions in BRICS Countries under the EKC Scheme," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. Vladimir Potashnikov & Alexander Golub & Michael Brody & Oleg Lugovoy, 2022. "Decarbonizing Russia: Leapfrogging from Fossil Fuel to Hydrogen," Energies, MDPI, vol. 15(3), pages 1-27, January.
    4. Tatiana Nevzorova & Vladimir Kutcherov, 2021. "The Role of Advocacy Coalitions in Shaping the Technological Innovation Systems: The Case of the Russian Renewable Energy Policy," Energies, MDPI, vol. 14(21), pages 1-24, October.
    5. Teresa Pakulska & Małgorzata Poniatowska-Jaksch, 2022. "Digitalization in the Renewable Energy Sector—New Market Players," Energies, MDPI, vol. 15(13), pages 1-21, June.
    6. Akrum Helfaya & Rebecca Morris & Ahmed Aboud, 2023. "Investigating the Factors That Determine the ESG Disclosure Practices in Europe," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    7. Elizaveta Gavrikova & Yegor Burda & Vladimir Gavrikov & Ruslan Sharafutdinov & Irina Volkova & Marina Rubleva & Daria Polosukhina, 2019. "Clean Energy Sources: Insights from Russia," Resources, MDPI, vol. 8(2), pages 1-25, May.
    8. Tatiana Nevzorova, 2020. "Biogas Production in the Russian Federation: Current Status, Potential, and Barriers," Energies, MDPI, vol. 13(14), pages 1-21, July.
    9. Rıdvan Karacan & Shahriyar Mukhtarov & İsmail Barış & Aykut İşleyen & Mehmet Emin Yardımcı, 2021. "The Impact of Oil Price on Transition toward Renewable Energy Consumption? Evidence from Russia," Energies, MDPI, vol. 14(10), pages 1-14, May.
    10. Galina Chebotareva & Manuela Tvaronavičienė & Larisa Gorina & Wadim Strielkowski & Julia Shiryaeva & Yelena Petrenko, 2022. "Revealing Renewable Energy Perspectives via the Analysis of the Wholesale Electricity Market," Energies, MDPI, vol. 15(3), pages 1-19, January.
    11. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    12. Mohsen Salimi & Majid Amidpour, 2022. "The Impact of Energy Transition on the Geopolitical Importance of Oil-Exporting Countries," World, MDPI, vol. 3(3), pages 1-12, August.
    13. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    14. Nayeem Chowdhury & Fabrizio Pilo & Giuditta Pisano, 2020. "Optimal Energy Storage System Positioning and Sizing with Robust Optimization," Energies, MDPI, vol. 13(3), pages 1-20, January.
    15. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    16. Yusuff Jelili Amuda & Shafiqul Hassan & Umashankar Subramaniam, 2023. "Comparative Review of Energy, Crude Oil, and Natural Gas for Exchange Markets in Nigeria, India and Bangladesh," Energies, MDPI, vol. 16(7), pages 1-19, March.
    17. Usman Mehmood & Ephraim Bonah Agyekum & Salman Tariq & Zia Ul Haq & Solomon Eghosa Uhunamure & Joshua Nosa Edokpayi & Ayesha Azhar, 2022. "Socio-Economic Drivers of Renewable Energy: Empirical Evidence from BRICS," IJERPH, MDPI, vol. 19(8), pages 1-10, April.
    18. Yandle, B. & Bhattarai, M. & Vijayaraghavan, M., 2004. "Environmental Kuznets Curves: a review of findings, methods, and policy implications. PERC Research study 02-1 update," IWMI Research Reports H044740, International Water Management Institute.
    19. Christoph Halser & Florentina Paraschiv, 2022. "Pathways to Overcoming Natural Gas Dependency on Russia—The German Case," Energies, MDPI, vol. 15(14), pages 1-24, July.
    20. Denis Sidorov & Daniil Panasetsky & Nikita Tomin & Dmitriy Karamov & Aleksei Zhukov & Ildar Muftahov & Aliona Dreglea & Fang Liu & Yong Li, 2020. "Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region," Energies, MDPI, vol. 13(5), pages 1-18, March.
    21. Liliana Proskuryakova & Georgy Ermolenko, 2022. "Decarbonization Prospects in the Commonwealth of Independent States," Energies, MDPI, vol. 15(6), pages 1-16, March.
    22. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    23. Anzhelika Karaeva & Elena Magaril & Vincenzo Torretta & Paolo Viotti & Elena Cristina Rada, 2022. "Public Attitude towards Nuclear and Renewable Energy as a Factor of Their Development in a Circular Economy Frame: Two Case Studies," Sustainability, MDPI, vol. 14(3), pages 1-15, January.
    24. Florian Ahlmeyer & Kati Volgmann, 2023. "What Can We Expect for the Development of Rural Areas in Europe?—Trends of the Last Decade and Their Opportunities for Rural Regeneration," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    25. Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    26. Darya Gribkova & Yulia Milshina, 2022. "Energy Transition as a Response to Energy Challenges in Post-Pandemic Reality," Energies, MDPI, vol. 15(3), pages 1-26, January.
    27. Zhexuan Qin & Ilhan Ozturk, 2021. "Renewable and Non-Renewable Energy Consumption in BRICS: Assessing the Dynamic Linkage between Foreign Capital Inflows and Energy Consumption," Energies, MDPI, vol. 14(10), pages 1-17, May.
    28. Piotr F. Borowski, 2022. "Mitigating Climate Change and the Development of Green Energy versus a Return to Fossil Fuels Due to the Energy Crisis in 2022," Energies, MDPI, vol. 15(24), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolay Tsvetkov & Stanislav Boldyryev & Aleksandr Shilin & Yuriy Krivoshein & Aleksandr Tolstykh, 2022. "Hardware and Software Implementation for Solar Hot Water System in Northern Regions of Russia," Energies, MDPI, vol. 15(4), pages 1-18, February.
    2. Shahriyar Mukhtarov & Fuzuli Aliyev & Javid Aliyev & Richard Ajayi, 2022. "Renewable Energy Consumption and Carbon Emissions: Evidence from an Oil-Rich Economy," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    3. Nikita Dmitrievich Senchilo & Denis Anatolievich Ustinov, 2021. "Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption," Energies, MDPI, vol. 14(21), pages 1-25, October.
    4. Muhammad Ishaq Bhatti & Ghulam Ghouse, 2022. "Environmentally Friendly Degradations Technology Breakthrough," Energies, MDPI, vol. 15(18), pages 1-5, September.
    5. Carlos Cacciuttolo & Deyvis Cano & Ximena Guardia & Eunice Villicaña, 2024. "Renewable Energy from Wind Farm Power Plants in Peru: Recent Advances, Challenges, and Future Perspectives," Sustainability, MDPI, vol. 16(4), pages 1-28, February.
    6. Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.
    7. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    8. Galina Chebotareva & Inna Čábelková & Wadim Strielkowski & Luboš Smutka & Anna Zielińska-Chmielewska & Stanislaw Bielski, 2023. "The Role of State in Managing the Wind Energy Projects: Risk Assessment and Justification of the Economic Efficiency," Energies, MDPI, vol. 16(12), pages 1-26, June.
    9. Fabian Knorre & Martin Wagner & Maximilian Grupe, 2021. "Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions," Econometrics, MDPI, vol. 9(1), pages 1-35, March.
    10. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    11. Yi Lian & Yunfeng Shang & Fangbin Qian, 2024. "Spatial effects of green finance development in Chinese provinces under the context of high-quality energy development," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-32, April.
    12. Mukhtarov, Shahriyar & Yüksel, Serhat & Dinçer, Hasan, 2022. "The impact of financial development on renewable energy consumption: Evidence from Turkey," Renewable Energy, Elsevier, vol. 187(C), pages 169-176.
    13. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    14. Héctor F. Salazar-Núñez & Francisco Venegas-Martínez & José Antonio Lozano-Díez, 2022. "Assessing the interdependence among renewable and non-renewable energies, economic growth, and CO2 emissions in Mexico," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12850-12866, November.
    15. Cemal Zehir & Mustafa Yücel & Alex Borodin & Sevgi Yücel & Songül Zehir, 2023. "Strategies in Energy Supply: A Social Network Analysis on the Energy Trade of the European Union," Energies, MDPI, vol. 16(21), pages 1-15, October.
    16. Denis Sidorov & Fang Liu & Yonghui Sun, 2020. "Machine Learning for Energy Systems," Energies, MDPI, vol. 13(18), pages 1-6, September.
    17. Ikuho Kochi & Patricia Cecilia Medina López, 2013. "Más allá de la Curva Ambiental de Kuznets: comprensión de los determinantes de la degradación ambiental en México," Nóesis. Revista de Ciencias Sociales y Humanidades, Nóesis. Revista de Ciencias Sociales y Humanidades, vol. 22, pages 52-83, 43.
    18. Henryk Łukowicz & Łukasz Bartela & Paweł Gładysz & Staffan Qvist, 2023. "Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology," Energies, MDPI, vol. 16(7), pages 1-25, March.
    19. Hawkar Anwer Hamad & Kemal Cek, 2023. "The Moderating Effects of Corporate Social Responsibility on Corporate Financial Performance: Evidence from OECD Countries," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    20. Ana Tereza Andrade Borba & Leonardo Jaime Machado Simões & Thamiles Rodrigues de Melo & Alex Álisson Bandeira Santos, 2024. "Techno-Economic Assessment of a Hybrid Renewable Energy System for a County in the State of Bahia," Energies, MDPI, vol. 17(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3843-:d:1136883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.