IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7270-d671389.html
   My bibliography  Save this article

A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision

Author

Listed:
  • Krzysztof Zagrajek

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland)

Abstract

One of the key aspects of vehicle-to-grid technology ( V2G ) is the analysis of uncertainty in electric vehicle user behavior. Correct estimation of the amount of available energy from electric vehicles that are expected to provide ancillary services to the electricity system operator or to secure the end user’s demand is essential to design these services in an appropriate way. Therefore, it is necessary to analyze the probabilities of V2G service performance for different scenarios. This paper presents the author’s approach to determining the values of V2G service provision probabilities using survey data. It was found that estimating these values using simulation and forecasting tools makes sense when the coefficients resulting from survey responses are used as initial data. Thus, the paper also presents the results of the surveys that were conducted. As the results from the simulations show, the values of the probabilities of V2G services are not high, which should induce future operators of V2G services to offer a beneficial product for the customer.

Suggested Citation

  • Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7270-:d:671389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siskos, Pelopidas & Capros, Pantelis & De Vita, Alessia, 2015. "CO2 and energy efficiency car standards in the EU in the context of a decarbonisation strategy: A model-based policy assessment," Energy Policy, Elsevier, vol. 84(C), pages 22-34.
    2. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Schuller, Alexander & Flath, Christoph M. & Gottwalt, Sebastian, 2015. "Quantifying load flexibility of electric vehicles for renewable energy integration," Applied Energy, Elsevier, vol. 151(C), pages 335-344.
    4. Bozorgavari, Seyed Aboozar & Aghaei, Jamshid & Pirouzi, Sasan & Nikoobakht, Ahmad & Farahmand, Hossein & Korpås, Magnus, 2020. "Robust planning of distributed battery energy storage systems in flexible smart distribution networks: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. J. Barrera-Santana & Gustavo A. Marrero & Luis A. Puch & Antonia Díaz, 2021. "CO2 emissions and energy technologies in Western Europe," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 105-150, June.
    6. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    7. Buchspies, Benedikt & Kaltschmitt, Martin & Neuling, Ulf, 2020. "Potential changes in GHG emissions arising from the introduction of biorefineries combining biofuel and electrofuel production within the European Union – A location specific assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    9. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    10. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    11. Loisel, Rodica & Pasaoglu, Guzay & Thiel, Christian, 2014. "Large-scale deployment of electric vehicles in Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts," Energy Policy, Elsevier, vol. 65(C), pages 432-443.
    12. Sekyung Han & Soohee Han, 2013. "Economic Feasibility of V2G Frequency Regulation in Consideration of Battery Wear," Energies, MDPI, vol. 6(2), pages 1-18, February.
    13. Pareschi, Giacomo & Küng, Lukas & Georges, Gil & Boulouchos, Konstantinos, 2020. "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," Applied Energy, Elsevier, vol. 275(C).
    14. Faddel, Samy & Aldeek, A. & Al-Awami, Ali T. & Sortomme, Eric & Al-Hamouz, Zakariya, 2018. "Ancillary Services Bidding for Uncertain Bidirectional V2G Using Fuzzy Linear Programming," Energy, Elsevier, vol. 160(C), pages 986-995.
    15. Meng, Jian & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qu, Bo, 2016. "Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system," Applied Energy, Elsevier, vol. 162(C), pages 966-979.
    16. Muhammad Huda & Tokimatsu Koji & Muhammad Aziz, 2020. "Techno Economic Analysis of Vehicle to Grid (V2G) Integration as Distributed Energy Resources in Indonesia Power System," Energies, MDPI, vol. 13(5), pages 1-16, March.
    17. Lindberg, K.B. & Bakker, S.J. & Sartori, I., 2019. "Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts," Utilities Policy, Elsevier, vol. 58(C), pages 63-88.
    18. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    19. Geske, Joachim & Schumann, Diana, 2018. "Willing to participate in vehicle-to-grid (V2G)? Why not!," Energy Policy, Elsevier, vol. 120(C), pages 392-401.
    20. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt, 2022. "Medium-Term Forecasts of Load Profiles in Polish Power System including E-Mobility Development," Energies, MDPI, vol. 15(15), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    2. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    3. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Rishabh Ghotge & Koen Philippe Nijssen & Jan Anne Annema & Zofia Lukszo, 2022. "Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?," Energies, MDPI, vol. 15(13), pages 1-22, July.
    5. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    6. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    7. Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
    8. Morteza Nazari-Heris & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    9. Nnaemeka Vincent Emodi & Scott Dwyer & Kriti Nagrath & John Alabi, 2022. "Electromobility in Australia: Tariff Design Structure and Consumer Preferences for Mobile Distributed Energy Storage," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    10. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2023. "Estimating financial compensation and minimum guaranteed charge for vehicle-to-grid technology," Energy Policy, Elsevier, vol. 180(C).
    11. Mehdizadeh, Milad & Nayum, Alim & Nordfjærn, Trond & Klöckner, Christian A., 2024. "Are Norwegian car users ready for a transition to vehicle-to-grid technology?," Transport Policy, Elsevier, vol. 146(C), pages 126-136.
    12. Will, Christian & Lehmann, Nico & Baumgartner, Nora & Feurer, Sven & Jochem, Patrick & Fichtner, Wolf, 2022. "Consumer understanding and evaluation of carbon-neutral electric vehicle charging services," Applied Energy, Elsevier, vol. 313(C).
    13. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    14. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    15. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    16. Gerald Broneske & David Wozabal, 2017. "How Do Contract Parameters Influence the Economics of Vehicle-to-Grid?," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 150-164, February.
    17. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    19. Rezkalla, Michel & Zecchino, Antonio & Martinenas, Sergejus & Prostejovsky, Alexander M. & Marinelli, Mattia, 2018. "Comparison between synthetic inertia and fast frequency containment control based on single phase EVs in a microgrid," Applied Energy, Elsevier, vol. 210(C), pages 764-775.
    20. Goncearuc, Andrei & Sapountzoglou, Nikolaos & De Cauwer, Cedric & Coosemans, Thierry & Messagie, Maarten & Crispeels, Thomas, 2022. "An integrative approach for business modelling: Application to the EV charging market," Journal of Business Research, Elsevier, vol. 143(C), pages 184-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7270-:d:671389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.