IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3299-d377225.html
   My bibliography  Save this article

An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid

Author

Listed:
  • Mohammad Shakeri

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Jagadeesh Pasupuleti

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Nowshad Amin

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Md. Rokonuzzaman

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Foo Wah Low

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Chong Tak Yaw

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Nilofar Asim

    (Solar Energy Research Institute (SERI). Level 3, Perpustakaan Tun Sri Lanang, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Nurul Asma Samsudin

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Sieh Kiong Tiong

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Chong Kok Hen

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang Selangor 43000, Malaysia)

  • Chin Wei Lai

    (Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur 50603, Malaysia)

Abstract

Electricity demand is increasing, as a result of increasing consumers in the electricity market. By growing smart technologies such as smart grid and smart energy management systems, customers were given a chance to actively participate in demand response programs (DRPs), and reduce their electricity bills as a result. This study overviews the DRPs and their practices, along with home energy management systems (HEMS) and load management techniques. The paper provides brief literature on HEMS technologies and challenges. The paper is organized in a way to provide some technical information about DRPs and HEMS to help the reader understand different concepts about the smart grid, and be able to compare the essential concerns about the smart grid. The article includes a brief discussion about DRPs and their importance for the future of energy management systems. It is followed by brief literature about smart grids and HEMS, and a home energy management system strategy is also discussed in detail. The literature shows that storage devices have a huge impact on the efficiency and performance of energy management system strategies.

Suggested Citation

  • Mohammad Shakeri & Jagadeesh Pasupuleti & Nowshad Amin & Md. Rokonuzzaman & Foo Wah Low & Chong Tak Yaw & Nilofar Asim & Nurul Asma Samsudin & Sieh Kiong Tiong & Chong Kok Hen & Chin Wei Lai, 2020. "An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid," Energies, MDPI, vol. 13(13), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3299-:d:377225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Reynolds, Jonathan & Ahmad, Muhammad Waseem & Rezgui, Yacine & Hippolyte, Jean-Laurent, 2019. "Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 699-713.
    3. Maytham S. Ahmed & Azah Mohamed & Raad Z. Homod & Hussain Shareef, 2016. "Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy," Energies, MDPI, vol. 9(9), pages 1-20, September.
    4. Guo, Hongye & Chen, Qixin & Zhang, Yan & Liu, Kai & Xia, Qing & Kang, Chongqing, 2020. "Constraining the oligopoly manipulation in electricity market: A vertical integration perspective," Energy, Elsevier, vol. 194(C).
    5. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    6. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    7. Shirazi, Elham & Jadid, Shahram, 2017. "Cost reduction and peak shaving through domestic load shifting and DERs," Energy, Elsevier, vol. 124(C), pages 146-159.
    8. Brinker, Laura & Satchwell, Andrew J., 2020. "A comparative review of municipal energy business models in Germany, California, and Great Britain: Institutional context and forms of energy decentralization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
    10. Muthamizh Selvam, M. & Gnanadass, R. & Padhy, N.P., 2016. "Initiatives and technical challenges in smart distribution grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 911-917.
    11. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.
    12. Ren, Hongbo & Wu, Qiong & Gao, Weijun & Zhou, Weisheng, 2016. "Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications," Energy, Elsevier, vol. 113(C), pages 702-712.
    13. Triebs, Thomas P. & Pollitt, Michael G., 2019. "Objectives and incentives: Evidence from the privatization of Great Britain’s power plants," International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 1-29.
    14. Afrasiabi, Mousa & Mohammadi, Mohammad & Rastegar, Mohammad & Kargarian, Amin, 2019. "Multi-agent microgrid energy management based on deep learning forecaster," Energy, Elsevier, vol. 186(C).
    15. Datta, Souvik, 2019. "Decoupling and demand-side management: Evidence from the US electric industry," Energy Policy, Elsevier, vol. 132(C), pages 175-184.
    16. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    17. Zahra Pooranian & Jemal H. Abawajy & Vinod P & Mauro Conti, 2018. "Scheduling Distributed Energy Resource Operation and Daily Power Consumption for a Smart Building to Optimize Economic and Environmental Parameters," Energies, MDPI, vol. 11(6), pages 1-17, May.
    18. Zotteri, Giulio & Kalchschmidt, Matteo & Caniato, Federico, 2005. "The impact of aggregation level on forecasting performance," International Journal of Production Economics, Elsevier, vol. 93(1), pages 479-491, January.
    19. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    20. Khan, Aftab Ahmed & Razzaq, Sohail & Khan, Asadullah & Khursheed, Fatima & Owais,, 2015. "HEMSs and enabled demand response in electricity market: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 773-785.
    21. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cátia Silva & Pedro Faria & Zita Vale, 2023. "Demand Response Implementation: Overview of Europe and United States Status," Energies, MDPI, vol. 16(10), pages 1-20, May.
    2. Akeratana Noppakant & Boonyang Plangklang, 2022. "Improving Energy Management through Demand Response Programs for Low-Rise University Buildings," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    3. Karol Bot & Inoussa Laouali & António Ruano & Maria da Graça Ruano, 2021. "Home Energy Management Systems with Branch-and-Bound Model-Based Predictive Control Techniques," Energies, MDPI, vol. 14(18), pages 1-27, September.
    4. Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    5. István G. Balázs & Attila Fodor & Attila Magyar, 2021. "Quantification of the Flexibility of Residential Prosumers," Energies, MDPI, vol. 14(16), pages 1-21, August.
    6. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.
    2. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    3. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    5. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    6. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    7. Mohammad Shakeri & Nowshad Amin & Jagadeesh Pasupuleti & Abolfazl Mehbodniya & Nilofar Asim & Sieh Kiong Tiong & Foo Wah Low & Chong Tak Yaw & Nurul Asma Samsudin & Md Rokonuzzaman & Chong Kok Hen & C, 2020. "An Autonomous Home Energy Management System Using Dynamic Priority Strategy in Conventional Homes," Energies, MDPI, vol. 13(13), pages 1-14, June.
    8. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    9. Sana Iqbal & Mohammad Sarfraz & Mohammad Ayyub & Mohd Tariq & Ripon K. Chakrabortty & Michael J. Ryan & Basem Alamri, 2021. "A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment," Sustainability, MDPI, vol. 13(13), pages 1, June.
    10. Celik, Berk & Roche, Robin & Suryanarayanan, Siddharth & Bouquain, David & Miraoui, Abdellatif, 2017. "Electric energy management in residential areas through coordination of multiple smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 260-275.
    11. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    12. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
    13. Waseem, Muhammad & Lin, Zhenzhi & Liu, Shengyuan & Zhang, Zhi & Aziz, Tarique & Khan, Danish, 2021. "Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources," Applied Energy, Elsevier, vol. 290(C).
    14. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    15. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    16. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Fahad R. Albogamy & Ghulam Hafeez & Imran Khan & Sheraz Khan & Hend I. Alkhammash & Faheem Ali & Gul Rukh, 2021. "Efficient Energy Optimization Day-Ahead Energy Forecasting in Smart Grid Considering Demand Response and Microgrids," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    18. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    19. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    20. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3299-:d:377225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.