IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v9y2024i5p63-d1385825.html
   My bibliography  Save this article

Detailed Landslide Traces Database of Hancheng County, China, Based on High-Resolution Satellite Images Available on the Google Earth Platform

Author

Listed:
  • Junlei Zhao

    (National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
    School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Chong Xu

    (National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
    Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China)

  • Xinwu Huang

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

Abstract

Hancheng is located in the eastern part of China’s Shaanxi Province, near the west bank of the Yellow River. It is located at the junction of the active geological structure area. The rock layer is relatively fragmented, and landslide disasters are frequent. The occurrence of landslide disasters often causes a large number of casualties along with economic losses in the local area, seriously restricting local economic development. Although risk assessment and deformation mechanism analysis for single landslides have been performed for landslide disasters in the Hancheng area, this area lacks a landslide traces database. A complete landslide database comprises the basic data required for the study of landslide disasters and is an important requirement for subsequent landslide-related research. Therefore, this study used multi-temporal high-resolution optical images and human-computer interaction visual interpretation methods of the Google Earth platform to construct a landslide traces database in Hancheng County. The results showed that at least 6785 landslides had occurred in the study area. The total area of the landslides was about 95.38 km 2 , accounting for 5.88% of the study area. The average landslide area was 1406.04 m 2 , the largest landslide area was 377,841 m 2 , and the smallest landslide area was 202.96 m 2 . The results of this study provides an important basis for understanding the spatial distribution of landslides in Hancheng County, the evaluation of landslide susceptibility, and local disaster prevention and mitigation work.

Suggested Citation

  • Junlei Zhao & Chong Xu & Xinwu Huang, 2024. "Detailed Landslide Traces Database of Hancheng County, China, Based on High-Resolution Satellite Images Available on the Google Earth Platform," Data, MDPI, vol. 9(5), pages 1-15, April.
  • Handle: RePEc:gam:jdataj:v:9:y:2024:i:5:p:63-:d:1385825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/9/5/63/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/9/5/63/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    2. Muhammad Basharat & Muhammad Tayyib Riaz & M. Qasim Jan & Chong Xu & Saima Riaz, 2021. "A review of landslides related to the 2005 Kashmir Earthquake: implication and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1-30, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Xu & Yifan Ma & Chang Liu & Ying Ji, 2024. "Emergency Logistics Facilities Location Dual-Objective Modeling in Uncertain Environments," Sustainability, MDPI, vol. 16(4), pages 1-34, February.
    2. Longwei Yang & Yangqing Xu & Luqi Wang & Qiangqiang Jiang, 2023. "Seismic Signal Characteristics and Numerical Modeling Analysis of the Xinmo Landslide," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    3. Adolfo Quesada-Román, 2022. "Disaster Risk Assessment of Informal Settlements in the Global South," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    4. Joselyne Solórzano & Fernando Morante-Carballo & Néstor Montalván-Burbano & Josué Briones-Bitar & Paúl Carrión-Mero, 2022. "A Systematic Review of the Relationship between Geotechnics and Disasters," Sustainability, MDPI, vol. 14(19), pages 1-31, October.
    5. Wan-Jiun Chen & Jihn-Fa Jan & Chih-Hsin Chung & Shyue-Cherng Liaw, 2022. "Resident Willingness to Pay for Ecosystem Services in Hillside Forests," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    6. Salman Atif & Muhammad Umar & Fahim Ullah, 2021. "Investigating the flood damages in Lower Indus Basin since 2000: Spatiotemporal analyses of the major flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2357-2383, September.
    7. Fernando Morante-Carballo & Néstor Montalván-Burbano & Maribel Aguilar-Aguilar & Paúl Carrión-Mero, 2022. "A Bibliometric Analysis of the Scientific Research on Artisanal and Small-Scale Mining," IJERPH, MDPI, vol. 19(13), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:9:y:2024:i:5:p:63-:d:1385825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.