IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v3y2013i2p210-220d24727.html
   My bibliography  Save this article

Sample Size Requirements for Assessing Statistical Moments of Simulated Crop Yield Distributions

Author

Listed:
  • Niklaus Lehmann

    (Institute for Environmental Decisions, Agrifood & Agri-environmental Economics Group, ETH Zurich, Sonneggstrasse 33/SOL C7, Zurich CH-8092, Switzerland)

  • Robert Finger

    (Agricultural Economics and Rural Policy Group, Wageningen University, Hollandseweg 1, Room 2114, NL-6706 KN Wageningen, The Netherlands)

  • Tommy Klein

    (Air Pollution/Climate Group, Agroscope Research Station ART, Reckenholzstrasse 191, Zurich CH-8046, Switzerland)

  • Pierluigi Calanca

    (Air Pollution/Climate Group, Agroscope Research Station ART, Reckenholzstrasse 191, Zurich CH-8046, Switzerland)

Abstract

Mechanistic crop growth models are becoming increasingly important in agricultural research and are extensively used in climate change impact assessments. In such studies, statistics of crop yields are usually evaluated without the explicit consideration of sample size requirements. The purpose of this paper was to identify minimum sample sizes for the estimation of average, standard deviation and skewness of maize and winterwheat yields based on simulations carried out under a range of climate and soil conditions. Our results indicate that 15 years of simulated crop yields are sufficient to estimate average crop yields with a relative error of less than 10% at 95% confidence. Regarding standard deviation and skewness, sample size requirements depend on the degree of symmetry of the underlying population’s distribution. For symmetric distributions, samples of 200 and 1500 yield observations are needed to estimate the crop yields’ standard deviation and skewness coefficient, respectively. Higher degrees of asymmetry increase the sample size requirements relative to the estimation of the standard deviation, while at the same time the sample size requirements relative to the skewness coefficient are decreased.

Suggested Citation

  • Niklaus Lehmann & Robert Finger & Tommy Klein & Pierluigi Calanca, 2013. "Sample Size Requirements for Assessing Statistical Moments of Simulated Crop Yield Distributions," Agriculture, MDPI, vol. 3(2), pages 1-11, April.
  • Handle: RePEc:gam:jagris:v:3:y:2013:i:2:p:210-220:d:24727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/3/2/210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/3/2/210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    2. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    3. Ardian Harri & Cumhur Erdem & Keith H. Coble & Thomas O. Knight, 2009. "Crop Yield Distributions: A Reconciliation of Previous Research and Statistical Tests for Normality," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(1), pages 163-182.
    4. Ines Kapphan & Pierluigi Calanca & Annelie Holzkaemper, 2012. "Climate Change, Weather Insurance Design and Hedging Effectiveness," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 37(2), pages 286-317, April.
    5. anonymous, 2000. "The brave new world of agriculture," EconSouth, Federal Reserve Bank of Atlanta, vol. 2(Q3), pages 8-13.
    6. Finger, Robert & Lazzarotto, Patrick & Calanca, Pierluigi, 2010. "Bio-economic assessment of climate change impacts on managed grassland production," Agricultural Systems, Elsevier, vol. 103(9), pages 666-674, November.
    7. Tran, Trang & Coble, Keith H. & Harri, Ardian & Barnett, Barry J. & Riley, John Michael, 2013. "Proposed Farm Bill Impact On The Optimal Hedge Ratios For Crops," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 143050, Southern Agricultural Economics Association.
    8. Ben Groom & Phoebe Koundouri & Celine Nauges & Alban Thomas, 2008. "The story of the moment: risk averse cypriot farmers respond to drought management," Applied Economics, Taylor & Francis Journals, vol. 40(3), pages 315-326.
    9. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Khanal, Uttam & Wilson, Clevo & Hoang, Vincent & Lee, Boon, 2015. "Autonomous adaptations to climate change and rice productivity: a case study of the Tanahun district, Nepal," MPRA Paper 106916, University Library of Munich, Germany.
    3. Bhattarai, Mukesh Dev & Secchi, Silvia & Schoof, Justin, 2017. "Projecting corn and soybeans yields under climate change in a Corn Belt watershed," Agricultural Systems, Elsevier, vol. 152(C), pages 90-99.
    4. Schönhart, Martin & Schauppenlehner, Thomas & Kuttner, Michael & Kirchner, Mathias & Schmid, Erwin, 2016. "Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria," Agricultural Systems, Elsevier, vol. 145(C), pages 39-50.
    5. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    6. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    7. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    8. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    9. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    10. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    11. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    12. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    13. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    14. Chandran M. Ajila & Saurabh J. Sarma & Satinder K. Brar & Stephane Godbout & Michel Cote & Frederic Guay & Mausam Verma & Jose R. Valéro, 2015. "Fermented Apple Pomace as a Feed Additive to Enhance Growth Performance of Growing Pigs and Its Effects on Emissions," Agriculture, MDPI, vol. 5(2), pages 1-17, June.
    15. Buchholz, Matthias & Musshoff, Oliver, 2014. "The role of weather derivatives and portfolio effects in agricultural water management," Agricultural Water Management, Elsevier, vol. 146(C), pages 34-44.
    16. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    17. Yong Liu & A. Ford Ramsey, 2023. "Incorporating historical weather information in crop insurance rating," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(2), pages 546-575, March.
    18. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    19. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    20. Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:3:y:2013:i:2:p:210-220:d:24727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.