IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v150y2024icp106-120.html
   My bibliography  Save this article

Towards the electrification of freight transport: A network design model for assessing the adoption of eHighways

Author

Listed:
  • Colovic, Aleksandra
  • Marinelli, Mario
  • Ottomanelli, Michele

Abstract

The development of new technological innovations for eco-friendly vehicles combined with the usage of renewable energy sources is essential for mitigating the environmental impact of freight transport. In this context, this paper investigates the opportunities for implementing the eHighway system, a novel recent technology designed to supply new hybrid trucks. This technology uses overhead catenary heavy-duty vehicles that are supplied with electric energy from overhead power lines through a pantograph that is positioned at the top of the truck. A novel bi-level multi-objective network electrification design (BM-NED) model is proposed to assess the environmental benefits and opportunities of adopting eHighways, considering the limited budgetary resources for road infrastructure electrification. Still, the implementation of eHighways requires collaboration between public and private stakeholder interests. The upper level considers multiple objectives aiming at minimizing the total travel cost, infrastructure, and environmental costs and maximizing the average traffic density of OC hybrid trucks on electrified arcs, whereas the lower level is the traffic assignment model. The Elitist multi-objective Genetic Algorithms are used as a solution approach for the multi-objective optimization and the Pareto front of the non-dominated solutions have been generated. Results of the model, tested on a part of a motorway network in the Veneto region in Italy, show that the implementation of the eHighway system can lead to an average emission reduction of about 66%, considering all Pareto-optimal solutions. Furthermore, a sensitivity analysis has been carried out by giving different weights to the objective functions that can be a basis for decision-makers regarding the adoption of this new technology.

Suggested Citation

  • Colovic, Aleksandra & Marinelli, Mario & Ottomanelli, Michele, 2024. "Towards the electrification of freight transport: A network design model for assessing the adoption of eHighways," Transport Policy, Elsevier, vol. 150(C), pages 106-120.
  • Handle: RePEc:eee:trapol:v:150:y:2024:i:c:p:106-120
    DOI: 10.1016/j.tranpol.2024.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24000866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:150:y:2024:i:c:p:106-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.