IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v146y2024icp102-113.html
   My bibliography  Save this article

Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs

Author

Listed:
  • Zhang, Ming
  • Zeng, Xianyang
  • Tan, Zhijia

Abstract

In order to comply with the latest Emission Control Areas (ECAs) regulations, ships must use expensive low-sulphur fuel oil or relatively cheap high-sulphur fuel oil (HFO) with desulphurization equipment. This study investigates the choice of green fuel and green technology for a coastal container ship with endogenous decision of sailing pattern. The sufficient and necessary conditions for a ship to adopt scrubber installation (SI) strategy are derived, which is dependent on factors including the equivalent sailing distance, the fuel price ratio, and scrubber parameters. The case study based on the China's coastal area is conducted. Numerical examples show that the introduction of scrubber technology on coastal vessels will reduce their evasion behavior. However, the increased sulphur reduction efficiency of scrubbers increases the evasion strategies of ships, which will increase the total emissions in coastal areas. The numerical example shows that introduction the scrubber technology to the coastal ships will reduce their evasion behavior. However, the scrubber investment will increase ships' sailing speed, increasing emissions within ECA. Therefore, governments can subsidize high abatement efficiencies of the scrubber to reduce actual ship emissions.

Suggested Citation

  • Zhang, Ming & Zeng, Xianyang & Tan, Zhijia, 2024. "Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs," Transport Policy, Elsevier, vol. 146(C), pages 102-113.
  • Handle: RePEc:eee:trapol:v:146:y:2024:i:c:p:102-113
    DOI: 10.1016/j.tranpol.2023.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23002974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    2. Zavitsas, Konstantinos & Zis, Thalis & Bell, Michael G.H., 2018. "The impact of flexible environmental policy on maritime supply chain resilience," Transport Policy, Elsevier, vol. 72(C), pages 116-128.
    3. Wang, Kun & Fu, Xiaowen & Luo, Meifeng, 2015. "Modeling the impacts of alternative emission trading schemes on international shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 35-49.
    4. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2020. "Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    5. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2021. "Assessment and improvement of EPA's penalty policy: From the perspective of governments' and ships' behaviors," Transport Policy, Elsevier, vol. 104(C), pages 18-28.
    6. Koesler, Simon & Achtnicht, Martin & Köhler, Jonathan, 2015. "Course set for a cap? A case study among ship operators on a maritime ETS," Transport Policy, Elsevier, vol. 37(C), pages 20-30.
    7. Shao, Shuai & Tan, Zhijia & Wang, Tingsong & Liu, Zhiyuan, 2023. "Configuration design of the emission control areas for coastal ships: A Stackelberg game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    8. Huan Liu & Mingliang Fu & Xinxin Jin & Yi Shang & Drew Shindell & Greg Faluvegi & Cary Shindell & Kebin He, 2016. "Health and climate impacts of ocean-going vessels in East Asia," Nature Climate Change, Nature, vol. 6(11), pages 1037-1041, November.
    9. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    10. Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    11. Mikhail Sofiev & James J. Winebrake & Lasse Johansson & Edward W. Carr & Marje Prank & Joana Soares & Julius Vira & Rostislav Kouznetsov & Jukka-Pekka Jalkanen & James J. Corbett, 2018. "Cleaner fuels for ships provide public health benefits with climate tradeoffs," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    12. Harilaos N. Psaraftis, 2019. "Speed Optimization vs Speed Reduction: the Choice between Speed Limits and a Bunker Levy," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    13. Kun Wang & Hangjun Yang & Anming Zhang, 2020. "Seaport adaptation to climate change-related disasters: terminal operator market structure and inter- and intra-port coopetition," Spatial Economic Analysis, Taylor & Francis Journals, vol. 15(3), pages 311-335, July.
    14. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    15. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    16. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.
    17. Gu, Yewen & Wallace, Stein W., 2017. "Scrubber: a potentially overestimated compliance method for the Emission Control Areas - The importance of involving a ship's sailing pattern in the evaluation," Discussion Papers 2017/13, Norwegian School of Economics, Department of Business and Management Science.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    2. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    3. Tan, Zhijia & Zhang, Ming & Shao, Shuai & Liang, Jinpeng & Sheng, Dian, 2022. "Evasion strategy for a coastal cargo ship with unpunctual arrival penalty under sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    5. Gong, Xu & Li, Zhi-Chun, 2022. "Determination of subsidy and emission control coverage under competition and cooperation of China-Europe Railway Express and liner shipping," Transport Policy, Elsevier, vol. 125(C), pages 323-335.
    6. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2021. "Assessment and improvement of EPA's penalty policy: From the perspective of governments' and ships' behaviors," Transport Policy, Elsevier, vol. 104(C), pages 18-28.
    7. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    8. Gu, Yewen & Wallace, Stein W. & Wang, Xin, 2018. "Can an Emission Trading Scheme really reduce CO2 emissions in the short term? Evidence from a maritime fleet composition and deployment model," Discussion Papers 2018/10, Norwegian School of Economics, Department of Business and Management Science.
    9. Lee, Sang-Jeong & Sun, Qinghe & Meng, Qiang, 2023. "Vessel weather routing subject to sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    10. Zheng, Shiyuan & Wang, Kun & Li, Zhi-Chun & Fu, Xiaowen & Chan, Felix T.S., 2021. "Subsidy or minimum requirement? Regulation of port adaptation investment under disaster ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 457-481.
    11. Sotiria Lagouvardou & Harilaos N. Psaraftis & Thalis Zis, 2020. "A Literature Survey on Market-Based Measures for the Decarbonization of Shipping," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    12. Yu, Jingjing & Tang, Guolei & Song, Xiangqun, 2022. "Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    13. Hui-Huang Tai & Yun-Hua Chang, 2022. "Reducing pollutant emissions from vessel maneuvering in port areas," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 651-671, September.
    14. I. Mallidis & S. Despoudi & R. Dekker & E. Iakovou & D. Vlachos, 2020. "The impact of sulphur limit fuel regulations on maritime supply chain network design," Annals of Operations Research, Springer, vol. 294(1), pages 677-695, November.
    15. Yang, Rui-feng & Hu, Rong & Xiao, Yi-bin & Deng, Xia & Wang, Kun, 2022. "Seaport's investment under disaster information asymmetry between public and private operators," Transport Policy, Elsevier, vol. 119(C), pages 89-112.
    16. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen & Gillen, David, 2017. "Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 99-114.
    17. Monios, Jason & Ng, Adolf K.Y., 2021. "Competing institutional logics and institutional erosion in environmental governance of maritime transport," Journal of Transport Geography, Elsevier, vol. 94(C).
    18. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    19. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2020. "Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    20. Zheng, Shiyuan & Fu, Xiaowen & Wang, Kun & Li, Hongchang, 2021. "Seaport adaptation to climate change disasters: Subsidy policy vs. adaptation sharing under minimum requirement," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:146:y:2024:i:c:p:102-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.