IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v185y2024ics1366554524001303.html
   My bibliography  Save this article

Promoting intelligent IoT-driven logistics through integrating dynamic demand and sustainable logistics operations

Author

Listed:
  • Wang, Jianxin
  • Lim, Ming K.
  • Liu, Weihua

Abstract

Developing a more convenient and sustainable logistics delivery operation model has become a consensus need for both academics and practitioners. However, the existing literature has focused on the impact of dynamic features of IoT customers on the distance cost of vehicles (DCV) and quantity cost of vehicles (QCV) in the field of the vehicle routing problem with time windows (VRPTW). Moreover, only a few application scenarios have been considered. This paper focuses on the perspective of intelligent logistics development to research the impact of IoT customers’ dynamic demand on the VRPTW. A mathematical model is established to respond to the dynamic demands of IoT customers with the goal of minimizing the distance cost. A strategy for solving the dynamic VRPTW (DVRPTW) based on time slices is developed, and an improved tabu search (I-TS) optimization algorithm is proposed to solve a given delivery business case. In simulation experiments, the proposed I-TS solution and another known best solution (namely, Solomon) are compared, and the results show the superior performance of the I-TS algorithm in reducing the DCV and QCV. Furthermore, the case study explores the relationship between the degree of dynamism (DoD), DCV and QCV under two scenarios (responding and not responding to dynamic demands of IoT customers). It is concluded that fluctuations of the DoD in a certain range affect only the DCV and not the QCV. Large-capacity vehicles can improve the robustness of the route scheme to dynamic demands. In addition, decomposing dynamic issues in space through time slicing effectively reduces the complexity of the DVRPTW solution. This research also aims to assist practitioners in better formulating dynamic delivery routes as well as policy makers in developing intelligent delivery operation models. Finally, limitations and future research directions are discussed.

Suggested Citation

  • Wang, Jianxin & Lim, Ming K. & Liu, Weihua, 2024. "Promoting intelligent IoT-driven logistics through integrating dynamic demand and sustainable logistics operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:transe:v:185:y:2024:i:c:s1366554524001303
    DOI: 10.1016/j.tre.2024.103539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524001303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:185:y:2024:i:c:s1366554524001303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.