IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v185y2024ics1366554524001091.html
   My bibliography  Save this article

A reinforcement learning-based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses

Author

Listed:
  • Li, Kunpeng
  • Liu, Tengbo
  • Ram Kumar, P.N.
  • Han, Xuefang

Abstract

Globally, e-commerce warehouses have begun implementing robotic mobile fulfillment systems (RMFS), which can improve order-picking efficiency by using automated guided vehicles (AGVs) to realize operations from parts to pickers. AGVs depart from their initial points, move to a target rack position, and subsequently transport racks to picking stations. The AGVs return the racks to their original positions after the workers pick them up. When all tasks are completed, the AGVs return to their starting point. In this context, the main challenge is the task assignment and route planning of multiple AGVs to minimize travel times. We formulate a mixed-integer linear programming (MILP) model with valid inequalities to solve small problem instances optimally. We introduce a reinforcement learning (RL)-based hyper-heuristic (HH) framework to solve large instances to near-optimality. A typical HH framework comprises two levels: high-level heuristics (HLH) and low-level heuristics (LLH). The framework starts from an initial solution and improves iteratively through LLHs, while the HLH invokes a selection strategy and an acceptance criterion to generate a new solution. We propose a novel selection strategy based on the improved Multi-Armed Bandits algorithm called Co-SLMAB and Exponential Monte Carlo with counters (EMCQ) as the acceptance criterion. The corresponding collision avoidance rules are then formulated for different conflicts to construct a conflict-free traveling route for AGVs. Besides testing the proposed framework’s effectiveness in real-life warehouse layouts, we perform extensive computational experiments and a thorough sensitivity analysis. The results show that (i) the proposed valid inequalities aid in obtaining better lower bounds and significantly speed up the solution process; (ii) the Co-SLMAB-HH framework is quite competitive compared to CPLEX, outperforming the other tested hyper-heuristics and the problem-specific heuristic regarding convergence and computation time; and (iii) a pool of LLHs consisting of a wide range of different operators is advantageous over a limited set of simple operators while solving problems using hyper-heuristics.

Suggested Citation

  • Li, Kunpeng & Liu, Tengbo & Ram Kumar, P.N. & Han, Xuefang, 2024. "A reinforcement learning-based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:transe:v:185:y:2024:i:c:s1366554524001091
    DOI: 10.1016/j.tre.2024.103518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524001091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:185:y:2024:i:c:s1366554524001091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.