IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v153y2021ics1366554521001885.html
   My bibliography  Save this article

Transfer-based customized modular bus system design with passenger-route assignment optimization

Author

Listed:
  • Gong, Manlin
  • Hu, Yucong
  • Chen, Zhiwei
  • Li, Xiaopeng

Abstract

Customized bus (CB) is an increasingly popular mode of transportation in many cities around the world. However, studies on CB network design have mostly overlooked three options that may further improve system performance: passenger-route assignment, passenger transfer, and modular vehicles. To bridge this gap, this paper proposes to design a transfer-based CB network with a modular fleet while simultaneously optimizing the passenger-route assignment. To solve the optimal network structure with this new design paradigm, we formulate the network design problem into a nonlinear mixed integer optimization model. A linearization approach and a particle swarm optimization (PSO) algorithm are proposed to solve the exact and near-optimal solution(s) to the model, respectively. Numerical experiments are conducted on the Sioux Falls network and a large-scale network in Chengdu, China. Results show that the customized PSO algorithm efficiently provides high quality near-optimal solutions compared with CPLEX, the genetic algorithm, and the simulated annealing algorithm. Results also show that incorporating passenger-route assignment optimization and the transfer operation produces a more cost-effective CB operational network with less operational costs and higher service quality. The benefit increases as the passenger demand grows.

Suggested Citation

  • Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:transe:v:153:y:2021:i:c:s1366554521001885
    DOI: 10.1016/j.tre.2021.102422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521001885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    2. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    3. Wei Fan & Randy B. Machemehl, 2008. "A Tabu Search Based Heuristic Method for the Transit Route Network Design Problem," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 387-408, Springer.
    4. Rahimi, Mahour & Amirgholy, Mahyar & Gonzales, Eric J., 2018. "System modeling of demand responsive transportation services: Evaluating cost efficiency of service and coordinated taxi usage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 66-83.
    5. Pei, Mingyang & Lin, Peiqun & Du, Jun & Li, Xiaopeng & Chen, Zhiwei, 2021. "Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    6. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2019. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 1-19.
    7. Billy E. Gillett & Leland R. Miller, 1974. "A Heuristic Algorithm for the Vehicle-Dispatch Problem," Operations Research, INFORMS, vol. 22(2), pages 340-349, April.
    8. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
    9. L. Miguel Martínez & José Manuel Viegas & Tomás Eiró, 2015. "Formulating a New Express Minibus Service Design Problem as a Clustering Problem," Transportation Science, INFORMS, vol. 49(1), pages 85-98, February.
    10. Liu, Tao & Ceder, Avishai (Avi), 2015. "Analysis of a new public-transport-service concept: Customized bus in China," Transport Policy, Elsevier, vol. 39(C), pages 63-76.
    11. Diana, Marco & Dessouky, Maged M. & Xia, Nan, 2006. "A model for the fleet sizing of demand responsive transportation services with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 651-666, September.
    12. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 14(2), pages 130-154, May.
    13. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2021. "Zonal-based flexible bus service under elastic stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Baozhen Yao & Bin Yu & Ping Hu & Junjie Gao & Mingheng Zhang, 2016. "An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot," Annals of Operations Research, Springer, vol. 242(2), pages 303-320, July.
    15. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    16. J Berger & M Barkaoui, 2003. "A new hybrid genetic algorithm for the capacitated vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1254-1262, December.
    17. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. LeBlanc, Larry J., 1988. "Transit system network design," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 383-390, October.
    19. Scherr, Yannick Oskar & Hewitt, Mike & Neumann Saavedra, Bruno Albert & Mattfeld, Dirk Christian, 2020. "Dynamic discretization discovery for the service network design problem with mixed autonomous fleets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 164-195.
    20. G. F. Newell, 1979. "Some Issues Relating to the Optimal Design of Bus Routes," Transportation Science, INFORMS, vol. 13(1), pages 20-35, February.
    21. Jean-François Cordeau, 2006. "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem," Operations Research, INFORMS, vol. 54(3), pages 573-586, June.
    22. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    23. Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    24. Yang Cao & Jian Wang, 2017. "An Optimization Method of Passenger Assignment for Customized Bus," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, June.
    25. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    26. Guan, J.F. & Yang, Hai & Wirasinghe, S.C., 2006. "Simultaneous optimization of transit line configuration and passenger line assignment," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 885-902, December.
    27. Van Breedam, Alex, 1995. "Improvement heuristics for the Vehicle Routing Problem based on simulated annealing," European Journal of Operational Research, Elsevier, vol. 86(3), pages 480-490, November.
    28. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    29. Carlos F. Daganzo, 1987. "The Break-Bulk Role of Terminals in Many-to-Many Logistic Networks," Operations Research, INFORMS, vol. 35(4), pages 543-555, August.
    30. van Engelen, Matti & Cats, Oded & Post, Henk & Aardal, Karen, 2018. "Enhancing flexible transport services with demand-anticipatory insertion heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 110-121.
    31. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qian & Qi, Jingwen & Zhen, Lu, 2023. "Optimization of integrated energy system considering multi-energy collaboration in carbon-free hydrogen port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    2. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    3. Khan, Zaid Saeed & Menéndez, Mónica, 2023. "Bus splitting and bus holding: A new strategy using autonomous modular buses for preventing bus bunching," Transportation Research Part A: Policy and Practice, Elsevier, vol. 177(C).
    4. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    5. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    6. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    7. Tang, Xindi & Yang, Jie & Lin, Xi & He, Fang & Si, Jinhua, 2023. "Dynamic operations of an integrated mobility service system of fixed-route transits and flexible electric buses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    8. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    2. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    3. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    4. Zhang, Wei & Liu, Jiahui & Wang, Kai & Wang, Liang, 2024. "Routing and charging optimization for electric bus operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    5. Goeke, Dominik, 2019. "Granular tabu search for the pickup and delivery problem with time windows and electric vehicles," European Journal of Operational Research, Elsevier, vol. 278(3), pages 821-836.
    6. Pei, Mingyang & Lin, Peiqun & Du, Jun & Li, Xiaopeng & Chen, Zhiwei, 2021. "Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    7. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    8. Lu, Jiawei & Nie, Qinghui & Mahmoudi, Monirehalsadat & Ou, Jishun & Li, Chongnan & Zhou, Xuesong Simon, 2022. "Rich arc routing problem in city logistics: Models and solution algorithms using a fluid queue-based time-dependent travel time representation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 143-182.
    9. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    10. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    11. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    12. Naoum-Sawaya, Joe & Cogill, Randy & Ghaddar, Bissan & Sajja, Shravan & Shorten, Robert & Taheri, Nicole & Tommasi, Pierpaolo & Verago, Rudi & Wirth, Fabian, 2015. "Stochastic optimization approach for the car placement problem in ridesharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 173-184.
    13. Zhang, Zhenhao & Tafreshian, Amirmahdi & Masoud, Neda, 2020. "Modular transit: Using autonomy and modularity to improve performance in public transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    14. Chebbi, Olfa & Chaouachi, Jouhaina, 2016. "Reducing the wasted transportation capacity of Personal Rapid Transit systems: An integrated model and multi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 236-258.
    15. Chen, Peng Will & Nie, Yu Marco, 2017. "Analysis of an idealized system of demand adaptive paired-line hybrid transit," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 38-54.
    16. Xuekai Cen & Kanghui Ren & Yiying Cai & Qun Chen, 2023. "Designing Flexible-Bus System with Ad-Hoc Service Using Travel-Demand Clustering," Mathematics, MDPI, vol. 11(4), pages 1-27, February.
    17. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    18. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    19. Wu, Jiaming & Kulcsár, Balázs & Selpi, & Qu, Xiaobo, 2021. "A modular, adaptive, and autonomous transit system (MAATS): A in-motion transfer strategy and performance evaluation in urban grid transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 81-98.
    20. Gayialis, Sotiris P. & Tatsiopoulos, Ilias P., 2004. "Design of an IT-driven decision support system for vehicle routing and scheduling," European Journal of Operational Research, Elsevier, vol. 152(2), pages 382-398, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:153:y:2021:i:c:s1366554521001885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.