IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v38y2004i3p235-250.html
   My bibliography  Save this article

A continuous equilibrium network design model and algorithm for transit systems

Author

Listed:
  • Gao, Ziyou
  • Sun, Huijun
  • Shan, Lian Long

Abstract

In this paper, a bilevel programming model for transit network design problem is presented, in which the upper model is a normal transit network design model, and the lower model is a transit equilibrium assignment model. A heuristic solution algorithm based on sensitivity analysis is designed for the model proposed. Finally, a simple numerical example is given to illustrate the application of the model and algorithm and some conclusions are drawn.

Suggested Citation

  • Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
  • Handle: RePEc:eee:transb:v:38:y:2004:i:3:p:235-250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(03)00011-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Yagar, Sam, 1995. "Traffic assignment and signal control in saturated road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 125-139, March.
    2. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    3. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    4. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    5. G. F. Newell, 1979. "Some Issues Relating to the Optimal Design of Bus Routes," Transportation Science, INFORMS, vol. 13(1), pages 20-35, February.
    6. Mahmassani, Hani S. & Mouskos, Kyriacos C., 1988. "Some numerical results on the diagonalization algorithm for network assignment with asymmetric interactions between cars and trucks," Transportation Research Part B: Methodological, Elsevier, vol. 22(4), pages 275-290, August.
    7. Sang Nguyen & Clermont Dupuis, 1984. "An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs," Transportation Science, INFORMS, vol. 18(2), pages 185-202, May.
    8. Yang, Hai & Bell, Michael G. H., 1997. "Traffic restraint, road pricing and network equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 303-314, August.
    9. Ceder, Avishai & Wilson, Nigel H. M., 1986. "Bus network design," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 331-344, August.
    10. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    11. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
    12. Mustafa Abdulaal & Larry J. LeBlanc, 1979. "Methods for Combining Modal Split and Equilibrium Assignment Models," Transportation Science, INFORMS, vol. 13(4), pages 292-314, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    2. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    3. Yang, Hai & Bell, Michael G. H. & Meng, Qiang, 2000. "Modeling the capacity and level of service of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 255-275, May.
    4. Clark, Stephen D. & Watling, David P., 2002. "Sensitivity analysis of the probit-based stochastic user equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 617-635, August.
    5. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    6. Luigi dell’Olio & Angel Ibeas & Francisco Ruisánchez, 2012. "Optimizing bus-size and headway in transit networks," Transportation, Springer, vol. 39(2), pages 449-464, March.
    7. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    8. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    9. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    10. Agdeppa, Rhoda P. & Yamashita, Nobuo & Fukushima, Masao, 2007. "The traffic equilibrium problem with nonadditive costs and its monotone mixed complementarity problem formulation," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 862-874, October.
    11. Castillo González, Rodrigo & Clempner, Julio B. & Poznyak, Alexander S., 2019. "Solving traffic queues at controlled-signalized intersections in continuous-time Markov games," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 283-297.
    12. Meneguzzer, Claudio, 1995. "An equilibrium route choice model with explicit treatment of the effect of intersections," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 329-356, October.
    13. Mohsen Momenitabar & Jeremy Mattson, 2021. "A Multi-Objective Meta-Heuristic Approach to Improve the Bus Transit Network: A Case Study of Fargo-Moorhead Area," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    14. Guo, Jianhua & Kong, Ye & Li, Zongzhi & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "A model and genetic algorithm for area-wide intersection signal optimization under user equilibrium traffic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 92-104.
    15. Curtin, Kevin M. & Biba, Steve, 2011. "The Transit Route Arc-Node Service Maximization problem," European Journal of Operational Research, Elsevier, vol. 208(1), pages 46-56, January.
    16. Garcia-Rodenas, Ricardo & Verastegui-Rayo, Doroteo, 2008. "A column generation algorithm for the estimation of origin-destination matrices in congested traffic networks," European Journal of Operational Research, Elsevier, vol. 184(3), pages 860-878, February.
    17. Wei Huang & Guangming Xu & Hong K. Lo, 2020. "Pareto-Optimal Sustainable Transportation Network Design under Spatial Queuing," Networks and Spatial Economics, Springer, vol. 20(3), pages 637-673, September.
    18. Chiou, Suh-Wen, 2003. "TRANSYT derivatives for area traffic control optimisation with network equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 263-290, March.
    19. Ukkusuri, Satish V. & Patil, Gopal, 2009. "Multi-period transportation network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 625-642, July.
    20. Orlando Barraza & Miquel Estrada, 2021. "Battery Electric Bus Network: Efficient Design and Cost Comparison of Different Powertrains," Sustainability, MDPI, vol. 13(9), pages 1-28, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:38:y:2004:i:3:p:235-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.