IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v102y2016icp357-372.html
   My bibliography  Save this article

International technology diffusion, multilateral R&D coordination, and global climate mitigation

Author

Listed:
  • Jin, Wei

Abstract

The issues of complementing emission-based international climate agreements with technology-oriented ones have been placed high upon future climate policy and research agenda. This paper is motivated to explore the fundamental mechanism of international technology coordination for global climate mitigation. We first present a partial equilibrium analytical model that intuitively unveils the basic mechanism of multilateral R&D coordination for saving climate mitigation costs. This mechanism is then quantitatively assessed in a multi-region general equilibrium numerical model that explicitly specifies the technology externality resulting from cross-country knowledge diffusion. Results show that: (1) By fully internalizing the technology externality of cross-country knowledge diffusion, multilateral R&D coordination can stimulate country-specific R&D efforts and cross-country technology diffusion; (2) Innovation enhanced by multilateral R&D coordination facilitates knowledge creation, which has a notable effect to boost economic growth and carbon savings in each participating country; and (3) By lowering the climate mitigation costs incurred by traditional emission-based climate policies, the technology-oriented agreements like multilateral R&D coordination can stimulate the incentives for mitigation action and improve the environmental effectiveness of global climate mitigation efforts.

Suggested Citation

  • Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
  • Handle: RePEc:eee:tefoso:v:102:y:2016:i:c:p:357-372
    DOI: 10.1016/j.techfore.2015.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162515002516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2015.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    3. de Coninck, Heleen & Fischer, Carolyn & Newell, Richard G. & Ueno, Takahiro, 2008. "International technology-oriented agreements to address climate change," Energy Policy, Elsevier, vol. 36(1), pages 335-356, January.
    4. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    5. Lejour, Arjan & Rojas-Romagosa, Hugo & Verweij, Gerard, 2008. "Opening services markets within Europe: Modelling foreign establishments in a CGE framework," Economic Modelling, Elsevier, vol. 25(5), pages 1022-1039, September.
    6. Leimbach, Marian & Edenhofer, Ottmar, 2007. "Technological spillovers within multi-region models: Intertemporal optimization beyond the Negishi approach," Economic Modelling, Elsevier, vol. 24(2), pages 272-294, March.
    7. James R. Markusen, 2004. "Multinational Firms and the Theory of International Trade," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633078, December.
    8. Brian J. Aitken & Ann E. Harrison, 2022. "Do Domestic Firms Benefit from Direct Foreign Investment? Evidence from Venezuela," World Scientific Book Chapters, in: Globalization, Firms, and Workers, chapter 6, pages 139-152, World Scientific Publishing Co. Pte. Ltd..
    9. Nordhaus, William, 2011. "Designing a friendly space for technological change to slow global warming," Energy Economics, Elsevier, vol. 33(4), pages 665-673, July.
    10. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    11. Yang, Zili & Nordhaus, William D., 2006. "Magnitude and direction of technological transfers for mitigating GHG emissions," Energy Economics, Elsevier, vol. 28(5-6), pages 730-741, November.
    12. Sofronis K. Clerides & Saul Lach & James R. Tybout, 1998. "Is Learning by Exporting Important? Micro-Dynamic Evidence from Colombia, Mexico, and Morocco," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 903-947.
    13. Michael Hoel & Aart Zeeuw, 2010. "Can a Focus on Breakthrough Technologies Improve the Performance of International Environmental Agreements?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(3), pages 395-406, November.
    14. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    15. Heal, Geoffrey & Tarui, Nori, 2010. "Investment and emission control under technology and pollution externalities," Resource and Energy Economics, Elsevier, vol. 32(1), pages 1-14, January.
    16. Golombek, Rolf & Hoel, Michael, 2008. "Endogenous technology and tradable emission quotas," Resource and Energy Economics, Elsevier, vol. 30(2), pages 197-208, May.
    17. Leimbach, Marian & Baumstark, Lavinia, 2010. "The impact of capital trade and technological spillovers on climate policies," Ecological Economics, Elsevier, vol. 69(12), pages 2341-2355, October.
    18. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages 4-17.
    19. David Popp, 2011. "International Technology Transfer, Climate Change, and the Clean Development Mechanism," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 131-152, Winter.
    20. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    21. Joseph E. Aldy & Scott Barrett & Robert N. Stavins, 2003. "Thirteen plus one: a comparison of global climate policy architectures," Climate Policy, Taylor & Francis Journals, vol. 3(4), pages 373-397, December.
    22. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
    23. Rolf Golombek & Michael Hoel, 2005. "Climate Policy under Technology Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 201-227, June.
    24. Wolfgang Keller & Stephen R. Yeaple, 2009. "Multinational Enterprises, International Trade, and Productivity Growth: Firm-Level Evidence from the United States," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 821-831, November.
    25. Codsi, George & Pearson, K R & Wilcoxen, Peter J, 1992. "General-Purpose Software for Intertemporal Economic Models," Computer Science in Economics & Management, Kluwer;Society for Computational Economics, vol. 5(1), pages 57-79, February.
    26. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    27. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    28. Scott Barrett & Robert Stavins, 2003. "Increasing Participation and Compliance in International Climate Change Agreements," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 3(4), pages 349-376, December.
    29. Rolf Golombek & Michael Hoel, 2011. "International Cooperation on Climate-friendly Technologies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(4), pages 473-490, August.
    30. Warwick J. Mckibbin & Adele C. Morris & Peter J. Wilcoxen, 2011. "Comparing Climate Commitments: A Model-Based Analysis Of The Copenhagen Accord," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 79-103.
    31. Otto, Vincent M. & Loschel, Andreas & Dellink, Rob, 2007. "Energy biased technical change: A CGE analysis," Resource and Energy Economics, Elsevier, vol. 29(2), pages 137-158, May.
    32. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    33. Francisco L. Rivera-Batiz & Luis A. Rivera-Batiz, 2018. "Economic Integration and Endogenous Growth," World Scientific Book Chapters, in: Francisco L Rivera-Batiz & Luis A Rivera-Batiz (ed.), International Trade, Capital Flows and Economic Development, chapter 1, pages 3-32, World Scientific Publishing Co. Pte. Ltd..
    34. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    35. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    36. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    37. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    38. Marian Leimbach & Klaus Eisenack, 2009. "A Trade Algorithm for Multi-Region Models Subject to Spillover Externalities," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 107-130, March.
    39. Otto, Vincent M. & Löschel, Andreas & Reilly, John, 2008. "Directed technical change and differentiation of climate policy," Energy Economics, Elsevier, vol. 30(6), pages 2855-2878, November.
    40. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    41. Scott Barrett, 2006. "Climate Treaties and "Breakthrough" Technologies," American Economic Review, American Economic Association, vol. 96(2), pages 22-25, May.
    42. Coe, David T & Helpman, Elhanan & Hoffmaister, Alexander W, 1997. "North-South R&D Spillovers," Economic Journal, Royal Economic Society, vol. 107(440), pages 134-149, January.
    43. Kypreos, Socrates & Turton, Hal, 2011. "Climate change scenarios and Technology Transfer Protocols," Energy Policy, Elsevier, vol. 39(2), pages 844-853, February.
    44. Jin, Wei, 2012. "Can technological innovation help China take on its climate responsibility? An intertemporal general equilibrium analysis," Energy Policy, Elsevier, vol. 49(C), pages 629-641.
    45. Lessmann, Kai & Edenhofer, Ottmar, 2011. "Research cooperation and international standards in a model of coalition stability," Resource and Energy Economics, Elsevier, vol. 33(1), pages 36-54, January.
    46. Rosenberg,Nathan, 1994. "Exploring the Black Box," Cambridge Books, Cambridge University Press, number 9780521459556.
    47. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    48. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    49. Kolstad, Charles D., 2007. "Systematic uncertainty in self-enforcing international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 68-79, January.
    50. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    51. Haddad, Mona & Harrison, Ann, 1993. "Are there positive spillovers from direct foreign investment? : Evidence from panel data for Morocco," Journal of Development Economics, Elsevier, vol. 42(1), pages 51-74, October.
    52. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    53. Xepapadeas, A., 1995. "Induced technical change and international agreements under greenhouse warming," Resource and Energy Economics, Elsevier, vol. 17(1), pages 1-23, May.
    54. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    55. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    2. Fujii, Hidemichi & Managi, Shunsuke, 2016. "Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 293-302.
    3. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
    4. Busra Agan & Mehmet Balcilar, 2022. "On the Determinants of Green Technology Diffusion: An Empirical Analysis of Economic, Social, Political, and Environmental Factors," Sustainability, MDPI, vol. 14(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
    3. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Jin, Wei & Zhang, ZhongXiang, 2014. "Explaining the Slow Pace of Energy Technological Innovation Why Market Conditions Matter?," Energy: Resources and Markets 165758, Fondazione Eni Enrico Mattei (FEEM).
    5. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    6. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Jin, Wei, 2012. "Can technological innovation help China take on its climate responsibility? An intertemporal general equilibrium analysis," Energy Policy, Elsevier, vol. 49(C), pages 629-641.
    8. Michael Hübler, 2015. "A theory-based discussion of international technology funding," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 313-327, April.
    9. Wei Jin & ZhongXiang Zhang, 2014. "On the Mechanism of International Technology Diffusion for Energy Productivity Growth," Working Papers 2014.40, Fondazione Eni Enrico Mattei.
    10. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
    11. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    12. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
    13. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    14. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    15. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    16. Jonathon M. Becker & Jared C. Carbone & Andreas Loeschel, 2022. "Induced Innovation and Carbon Leakage," Working Papers 2022-04, Colorado School of Mines, Division of Economics and Business.
    17. De Cian, Enrica, 2006. "International Technology Spillovers in Climate-Economy Models: Two Possible Approaches," Climate Change Modelling and Policy Working Papers 12040, Fondazione Eni Enrico Mattei (FEEM).
    18. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    19. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    20. Wei Jin & ZhongXiang Zhang, 2016. "China's pursuit of environmentally sustainable development: Harnessing the new engine of technological innovation," CCEP Working Papers 1601, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:102:y:2016:i:c:p:357-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.