IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i21-22p1623-1632.html
   My bibliography  Save this article

Lévy density estimation via information projection onto wavelet subspaces

Author

Listed:
  • Song, Seongjoo

Abstract

This paper proposes a nonparametric method for producing smooth and positive estimates of the density of a Lévy process, which is widely used in mathematical finance. We use the method of logwavelet density estimation to estimate the Lévy density with discretely sampled observations. Since Lévy densities are not necessarily probability densities, we introduce a divergence measure similar to Kullback-Leibler information to measure the difference between two Lévy densities. Rates of convergence are established over Besov spaces.

Suggested Citation

  • Song, Seongjoo, 2010. "Lévy density estimation via information projection onto wavelet subspaces," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1623-1632, November.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:21-22:p:1623-1632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00188-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy models," Finance and Stochastics, Springer, vol. 10(4), pages 449-474, December.
    2. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    3. Koo, Ja-Yong & Kim, Woo-Chul, 1996. "Wavelet density estimation by approximation of log-densities," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 271-278, February.
    4. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akakpo, Nathalie, 2017. "Multivariate intensity estimation via hyperbolic wavelet selection," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 32-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathias Trabs, 2011. "Calibration of selfdecomposable Lévy models," SFB 649 Discussion Papers SFB649DP2011-073, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    3. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    4. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    5. repec:eid:wpaper:06/10 is not listed on IDEAS
    6. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised May 2024.
    7. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    8. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    9. Patrizia Semeraro, 2022. "Multivariate tempered stable additive subordination for financial models," Mathematics and Financial Economics, Springer, volume 16, number 3, June.
    10. Dilip B. Madan & King Wang, 2022. "Two sided efficient frontiers at multiple time horizons," Annals of Finance, Springer, vol. 18(3), pages 327-353, September.
    11. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    12. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    13. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    14. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    15. Patrizia Semeraro, 2021. "Multivariate tempered stable additive subordination for financial models," Papers 2105.00844, arXiv.org, revised Sep 2021.
    16. Naoto Kunitomo & Takashi Owada, 2004. "Empirical Likelihood Estimation of Levy Processes (Revised: March 2005)," CIRJE F-Series CIRJE-F-272, CIRJE, Faculty of Economics, University of Tokyo.
    17. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    18. Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
    19. Marzia De Donno & Zbigniew Palmowski & Joanna Tumilewicz, 2020. "Double continuation regions for American and Swing options with negative discount rate in Lévy models," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 196-227, January.
    20. João Guerra & Manuel Guerra & Zachary Polaski, 2019. "Market Timing with Option-Implied Distributions in an Exponentially Tempered Stable Lévy Market," Working Papers REM 2019/74, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    21. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:21-22:p:1623-1632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.