IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v193y2024ics1364032124000157.html
   My bibliography  Save this article

A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack

Author

Listed:
  • Sarjuni, C.A.
  • Lim, B.H.
  • Majlan, E.H.
  • Rosli, M.I.

Abstract

Findings on PEMFC designs grew tremendously in the past decade. Commercially, PEMFCs are usually configured in a stack to achieve higher electrochemical output. However, the two-phase fluid transport in a multiple-cell stack raises the complexity of reactant diffusion towards the porous electrodes than a single-cell stack as the higher current generation naturally increases water and heat production. Ensuring optimum hydration with even thermal distribution is critical in maintaining the MEA durability and overall electrochemical performance. Therefore, this review paper provides a comprehensive discussion of how the inconsistencies in water and thermal distribution impact the electrochemical reactiveness within the cell and electrode layers of a multiple-cell PEMFC stack. Targeting the bipolar plate design is not only essential for uniform fluid distribution but it can also be used to maximise the contact surface area to achieve a greater reactant consumption rate. Hence, the effect of varying manifold, flow field and distribution zone designs towardthe fluid and reaction dynamics per cell of a multiple-cell stack were discussed based on available literature. Although the difference in water and heat saturation between single- and multiple-cell stacks could be highlighted clearly in this paper, more research is needed particularly for novel bipolar plate designs. This would be essential knowledge in generating an optimal bipolar plate design that can enhance the durability and performance of PEMFC stacks.

Suggested Citation

  • Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:rensus:v:193:y:2024:i:c:s1364032124000157
    DOI: 10.1016/j.rser.2024.114292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124000157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lingfeng Xuan & Yancheng Wang & Deqing Mei & Jingwei Lan, 2021. "Design and Modelling of 3D Bionic Cathode Flow Field for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 14(19), pages 1-13, September.
    2. Zhang, Guobin & Yuan, Hao & Wang, Yun & Jiao, Kui, 2019. "Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 255(C).
    3. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    4. Huang, Fuxiang & Qiu, Diankai & Xu, Zhutian & Peng, Linfa & Lai, Xinmin, 2021. "Analysis and improvement of flow distribution in manifold for proton exchange membrane fuel cell stacks," Energy, Elsevier, vol. 226(C).
    5. Su, Guoqing & Yang, Daijun & Xiao, Qiangfeng & Dai, Haiqin & Zhang, Cunman, 2021. "Effects of vortexes in feed header on air flow distribution of PEMFC stack: CFD simulation and optimization for better uniformity," Renewable Energy, Elsevier, vol. 173(C), pages 498-506.
    6. Esbo, M. Rahimi- & Ranjbar, A.A. & Rahgoshay, S.M., 2020. "Analysis of water management in PEM fuel cell stack at dead-end mode using direct visualization," Renewable Energy, Elsevier, vol. 162(C), pages 212-221.
    7. Pei, Houchang & Xiao, Chenguang & Tu, Zhengkai, 2022. "Experimental study on liquid water formation characteristics in a novel transparent proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 321(C).
    8. Ewa Janicka & Michal Mielniczek & Lukasz Gawel & Kazimierz Darowicki, 2021. "Optimization of the Relative Humidity of Reactant Gases in Hydrogen Fuel Cells Using Dynamic Impedance Measurements," Energies, MDPI, vol. 14(11), pages 1-11, May.
    9. Antonio Sorrentino & Kai Sundmacher & Tanja Vidakovic-Koch, 2020. "Polymer Electrolyte Fuel Cell Degradation Mechanisms and Their Diagnosis by Frequency Response Analysis Methods: A Review," Energies, MDPI, vol. 13(21), pages 1-28, November.
    10. Xiao, Biao & Zhao, Junjie & Fan, Lixin & Liu, Yang & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Effects of moisture dehumidification on the performance and degradation of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 245(C).
    11. Dabiri, Soroush & Hashemi, Mohammadreza & Rahimi, Mohammadfazel & Bahiraei, Mehdi & Khodabandeh, Erfan, 2018. "Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell," Energy, Elsevier, vol. 152(C), pages 719-731.
    12. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    13. Zhang, Shuanyang & Liu, Shun & Xu, Hongtao & Liu, Gaojie & Wang, Ke, 2022. "Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design," Energy, Elsevier, vol. 239(PB).
    14. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    15. Ma, Suhui & Qin, Yanzhou & Liu, Yuwen & Sun, Liancheng & Guo, Qiaoyu & Yin, Yan, 2022. "Delamination evolution of PEM fuel cell membrane/CL interface under asymmetric RH cycling and CL crack location," Applied Energy, Elsevier, vol. 310(C).
    16. Ashrafi, Moosa & Shams, Mehrzad, 2017. "The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels," Applied Energy, Elsevier, vol. 208(C), pages 1083-1096.
    17. Lim, B.H. & Majlan, E.H. & Daud, W.R.W. & Rosli, M.I. & Husaini, T., 2019. "Three-dimensional study of stack on the performance of the proton exchange membrane fuel cell," Energy, Elsevier, vol. 169(C), pages 338-343.
    18. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    19. Kavian, Soheil & Aghanajafi, Cyrus & Jafari Mosleh, Hassan & Nazari, Arash & Nazari, Ashkan, 2020. "Exergy, economic and environmental evaluation of an optimized hybrid photovoltaic-geothermal heat pump system," Applied Energy, Elsevier, vol. 276(C).
    20. Suárez, Christian & Iranzo, Alfredo & Toharias, Baltasar & Rosa, Felipe, 2022. "Experimental and numerical Investigation on the design of a bioinspired PEM fuel cell," Energy, Elsevier, vol. 257(C).
    21. Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2021. "Improved energy performance of a PEM fuel cell by introducing discontinuous S-shaped and crescent ribs into flowing channels," Energy, Elsevier, vol. 222(C).
    22. Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    3. Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
    4. Atyabi, Seyed Ali & Afshari, Ebrahim & Zohravi, Elnaz & Udemu, Chinonyelum M., 2021. "Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel," Energy, Elsevier, vol. 234(C).
    5. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Wang, Yonggang & Gu, Meng & Yang, Xi & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Performance and configuration optimization of proton exchange membrane fuel cell considering dual symmetric Tesla valve flow field," Energy, Elsevier, vol. 288(C).
    6. Yin, Ren-Jie & Zeng, Wen-Chao & Bai, Fan & Chen, Li & Tao, Wen-Quan, 2024. "Study on the effects of manifold structure on the gas flow distribution uniformity of anode of PEMFC stack with 140-cell," Renewable Energy, Elsevier, vol. 221(C).
    7. Huang, Haozhong & Liu, Mingxin & Li, Xuan & Guo, Xiaoyu & Wang, Tongying & Li, Songwei & Lei, Han, 2022. "Numerical simulation and visualization study of a new tapered-slope serpentine flow field in proton exchange membrane fuel cell," Energy, Elsevier, vol. 246(C).
    8. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Yang, Xi & Wang, Zhuo & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Full-scale three-dimensional simulation of air cooling metal bipolar plate proton exchange membrane fuel cell stack considering a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 357(C).
    9. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    10. Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).
    11. Suprava Chakraborty & Devaraj Elangovan & Karthikeyan Palaniswamy & Ashley Fly & Dineshkumar Ravi & Denis Ashok Sathia Seelan & Thundil Karuppa Raj Rajagopal, 2022. "A Review on the Numerical Studies on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) Flow Channel Designs for Automotive Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    12. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
    13. Bai, Xingying & Jian, Qifei, 2023. "Experimental study of a passive thermal management system using vapor chamber for proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 216(C).
    14. Huang, Haozhong & Li, Xuan & Li, Songwei & Guo, Xiaoyu & Liu, Mingxin & Wang, Tongying & Lei, Han, 2023. "Evaluating the effect of refined flow channels in a developed biomimetic flow field on PEMFC performance," Energy, Elsevier, vol. 266(C).
    15. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    16. Chu, Tiankuo & Xie, Meng & Yu, Yue & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Experimental study of the influence of dynamic load cycle and operating parameters on the durability of PEMFC," Energy, Elsevier, vol. 239(PD).
    17. Wilberforce, Tabbi & Olabi, A.G. & Pritchard, Daniel & Abdelkareem, Mohammad Ali & Sayed, Enas Taha, 2023. "Development of proton exchange membrane fuel cell flow plate geometry design," Energy, Elsevier, vol. 283(C).
    18. Huang, Ying & Song, Jiangnan & Deng, Xinyue & Chen, Su & Zhang, Xiang & Ma, Zongpeng & Chen, Lunjun & Wu, Yanli, 2023. "Numerical investigation of baffle shape effects on performance and mass transfer of proton exchange membrane fuel cell," Energy, Elsevier, vol. 266(C).
    19. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    20. Sun, Yun & Lin, Yixiong & Wang, Qinglian & Yang, Chen & Yin, Wang & Wan, Zhongmin & Qiu, Ting, 2024. "Novel design and numerical investigation of a windward bend flow field for proton exchange membrane fuel cell," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:193:y:2024:i:c:s1364032124000157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.