IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123009966.html
   My bibliography  Save this article

Digitalization in response to carbon neutrality: Mechanisms, effects and prospects

Author

Listed:
  • Ma, Jinjin
  • Yang, Lin
  • Wang, Donghan
  • Li, Yiming
  • Xie, Zuomiao
  • Lv, Haodong
  • Woo, Donghyup

Abstract

Digitalization has unfolded great opportunities for its ability to promote carbon neutrality. Nevertheless, it is still in a nascent stage enduring uncertainties due to the lack of clear guidance about holistic digitalization contributions to the carbon neutrality process (CNP). Moreover, the intricate environmental effects provided by digitalization and digital mechanisms towards CNP present a fragmented landscape with controversial arguments, deserving further exploration. Addressing this gap, multidimensional macro environmental and economic impacts induced by digitalization - such as direct and indirect effects, rebound effects, spillover effects and higher-order effects - are systematically evaluated to answer the issues about whether digitalization can contribute to carbon neutrality. Furthermore, the synergetic management of digital application and carbon reduction are closely related to the energy value chain. To this end, by overviewing objective and comprehensive scenarios related to state-of-the-art digital technologies in multiple sectors of the energy value chain, this study proposes an integral mechanism framework by theorizing an undefined field about digitalization towards CNP in terms of sectoral innovation, energy systems, individual behaviours, carbon-related assurance, and energy security guarantees. Accordingly, this study also contributes to potential directions and rising policy expectations about further estimation of digital effects, broader digital scenarios towards CNP and sustainable digitalization.

Suggested Citation

  • Ma, Jinjin & Yang, Lin & Wang, Donghan & Li, Yiming & Xie, Zuomiao & Lv, Haodong & Woo, Donghyup, 2024. "Digitalization in response to carbon neutrality: Mechanisms, effects and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009966
    DOI: 10.1016/j.rser.2023.114138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123009966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sakiru Adebola Solarin & Muhammad Shahbaz & Habib Nawaz Khan & Radzuan Bin Razali, 2021. "ICT, Financial Development, Economic Growth and Electricity Consumption: New Evidence from Malaysia," Global Business Review, International Management Institute, vol. 22(4), pages 941-962, August.
    2. Yu, Wei & Patros, Panos & Young, Brent & Klinac, Elsa & Walmsley, Timothy Gordon, 2022. "Energy digital twin technology for industrial energy management: Classification, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2020. "Instrument choice and stranded assets in the transition to clean capital," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    4. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Wilson, Christopher & van der Velden, Maja, 2022. "Sustainable AI: An integrated model to guide public sector decision-making," Technology in Society, Elsevier, vol. 68(C).
    6. Guandalini, Ilaria, 2022. "Sustainability through digital transformation: A systematic literature review for research guidance," Journal of Business Research, Elsevier, vol. 148(C), pages 456-471.
    7. Awais Manzoor & Nadeem Javaid & Ibrar Ullah & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2017. "An Intelligent Hybrid Heuristic Scheme for Smart Metering based Demand Side Management in Smart Homes," Energies, MDPI, vol. 10(9), pages 1-28, August.
    8. Wei, Zhaohao & Chai, Jian & Dong, Jichang & Lu, Quanying, 2022. "Understanding the linkage-dependence structure between oil and gas markets: A new perspective," Energy, Elsevier, vol. 257(C).
    9. Goteti, Naga Srujana & Hittinger, Eric & Sergi, Brian & Lima Azevedo, Inês, 2021. "How does new energy storage affect the operation and revenue of existing generation?," Applied Energy, Elsevier, vol. 285(C).
    10. Kouton, Jeffrey, 2019. "Information Communication Technology development and energy demand in African countries," Energy, Elsevier, vol. 189(C).
    11. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    12. Jayarathna, Lasinidu & Kent, Geoff & O'Hara, Ian & Hobson, Philip, 2020. "A Geographical Information System based framework to identify optimal location and size of biomass energy plants using single or multiple biomass types," Applied Energy, Elsevier, vol. 275(C).
    13. Al Mamun, Md & Sohag, Kazi & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2018. "Financial markets, innovations and cleaner energy production in OECD countries," Energy Economics, Elsevier, vol. 72(C), pages 236-254.
    14. Agrell, Per J. & Bogetoft, Peter & Mikkers, Misja, 2013. "Smart-grid investments, regulation and organization," Energy Policy, Elsevier, vol. 52(C), pages 656-666.
    15. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan, 2016. "The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1226-1235.
    16. Zhang, Bin & Zhang, Yingnan & Li, Jia & Song, Yanwu & Wang, Zhaohua, 2023. "Does the energy efficiency of buildings bring price premiums? Evidence from urban micro-level energy data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
    17. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    18. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    19. Lv, Zhihan & Cheng, Chen & Lv, Haibin, 2023. "Digital twins for secure thermal energy storage in building," Applied Energy, Elsevier, vol. 338(C).
    20. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    21. Wang, Jiangquan & Nghiem, Xuan-Hoa & Jabeen, Fauzia & Luqman, Adeel & Song, Malin, 2023. "Integrated development of digital and energy industries: Paving the way for carbon emission reduction," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    22. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    23. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    24. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    25. Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
    26. Chwiłkowska-Kubala, Anna & Cyfert, Szymon & Malewska, Kamila & Mierzejewska, Katarzyna & Szumowski, Witold, 2023. "The impact of resources on digital transformation in energy sector companies. The role of readiness for digital transformation," Technology in Society, Elsevier, vol. 74(C).
    27. Gouvea, Raul & Kapelianis, Dimitri & Kassicieh, Sul, 2018. "Assessing the nexus of sustainability and information & communications technology," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 39-44.
    28. Ferreira, Laura & Oliveira, Tiago & Neves, Catarina, 2023. "Consumer's intention to use and recommend smart home technologies: The role of environmental awareness," Energy, Elsevier, vol. 263(PC).
    29. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
    30. Zhang, Yue-Jun, 2011. "The impact of financial development on carbon emissions: An empirical analysis in China," Energy Policy, Elsevier, vol. 39(4), pages 2197-2203, April.
    31. Shi, Jianglan & Li, Chao & Li, Huajiao, 2022. "Energy consumption in China's ICT sectors: From the embodied energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    32. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    33. Lu, Ying & Fang, Sidun & Niu, Tao & Liao, Ruijin, 2023. "Energy-transport scheduling for green vehicles in seaport areas: A review on operation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    34. Scarpellini, S. & Valero, A. & Llera, E. & Aranda, A., 2013. "Multicriteria analysis for the assessment of energy innovations in the transport sector," Energy, Elsevier, vol. 57(C), pages 160-168.
    35. van den Buuse, Daniel & Kolk, Ans, 2019. "An exploration of smart city approaches by international ICT firms," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 220-234.
    36. Strobel, Thomas, 2016. "ICT intermediates and productivity spillovers - Evidence from German and US manufacturing sectors," Munich Reprints in Economics 43489, University of Munich, Department of Economics.
    37. Shangrong Jiang & Yuze Li & Quanying Lu & Yongmiao Hong & Dabo Guan & Yu Xiong & Shouyang Wang, 2021. "Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    38. Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
    39. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    40. Lee Thomas & Yue Zhou & Chao Long & Jianzhong Wu & Nick Jenkins, 2019. "A general form of smart contract for decentralized energy systems management," Nature Energy, Nature, vol. 4(2), pages 140-149, February.
    41. Carmichael, R. & Gross, R. & Hanna, R. & Rhodes, A. & Green, T., 2021. "The Demand Response Technology Cluster: Accelerating UK residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    42. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    43. Frank, Alejandro Germán & Dalenogare, Lucas Santos & Ayala, Néstor Fabián, 2019. "Industry 4.0 technologies: Implementation patterns in manufacturing companies," International Journal of Production Economics, Elsevier, vol. 210(C), pages 15-26.
    44. Bastida, Leire & Cohen, Jed J. & Kollmann, Andrea & Moya, Ana & Reichl, Johannes, 2019. "Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 455-462.
    45. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    46. Hongryol Cha & Masaaki Kotabe & Jie Wu, 2023. "Reshaping Internationalization Strategy and Control for Global E-Commerce and Digital Transactions: A Hayekian Perspective," Management International Review, Springer, vol. 63(1), pages 161-192, February.
    47. Chalvatzis, Konstantinos J. & Rubel, Keagan, 2015. "Electricity portfolio innovation for energy security: The case of carbon constrained China," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 267-276.
    48. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    49. Liu, Yang & Yu, Nanpeng & Wang, Wei & Guan, Xiaohong & Xu, Zhanbo & Dong, Bing & Liu, Ting, 2018. "Coordinating the operations of smart buildings in smart grids," Applied Energy, Elsevier, vol. 228(C), pages 2510-2525.
    50. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    51. Sadawi, Alia Al & Madani, Batool & Saboor, Sara & Ndiaye, Malick & Abu-Lebdeh, Ghassan, 2021. "A comprehensive hierarchical blockchain system for carbon emission trading utilizing blockchain of things and smart contract," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    52. Botang Han & Dong Wang & Weina Ding & Lei Han, 2016. "Effect of information and communication technology on energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 297-315, November.
    53. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    54. Brewis, Claire & Dibb, Sally & Meadows, Maureen, 2023. "Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    55. Ye, Fei & Ouyang, You & Li, Yina, 2023. "Digital investment and environmental performance: The mediating roles of production efficiency and green innovation," International Journal of Production Economics, Elsevier, vol. 259(C).
    56. Zhuo (June) Cheng & Barrie R. Nault, 2007. "Industry Level Supplier-Driven IT Spillovers," Management Science, INFORMS, vol. 53(8), pages 1199-1216, August.
    57. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    58. Niu, Xinsong & Wang, Jiyang & Wei, Danxiang & Zhang, Lifang, 2022. "A combined forecasting framework including point prediction and interval prediction for carbon emission trading prices," Renewable Energy, Elsevier, vol. 201(P1), pages 46-59.
    59. Gong, Shixin, 2023. "Multi-scale energy efficiency recognition and diagnosis scheme for ethylene production based on a hierarchical multi-indicator system," Energy, Elsevier, vol. 267(C).
    60. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    61. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    62. Kok, Gerjo & Lo, Siu Hing & Peters, Gjalt-Jorn Y. & Ruiter, Robert A.C., 2011. "Changing energy-related behavior: An Intervention Mapping approach," Energy Policy, Elsevier, vol. 39(9), pages 5280-5286, September.
    63. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Improving energy efficiency prediction under aberrant measurement using deep compensation networks: A case study of petrochemical process," Energy, Elsevier, vol. 263(PC).
    64. Xu, Tong & Zhu, Chunyan & Shi, Longyu & Gao, Lijie & Zhang, Miao, 2017. "Evaluating energy efficiency of public institutions in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 17-24.
    65. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    66. Zheng, Shuxia & Zhang, Xiaoming & Wang, Hu, 2023. "Green credit policy and the stock price synchronicity of heavily polluting enterprises," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 251-264.
    67. Qiang, Guofeng & Tang, Shu & Hao, Jianli & Di Sarno, Luigi & Wu, Guangdong & Ren, Shaoxing, 2023. "Building automation systems for energy and comfort management in green buildings: A critical review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    68. Marra, Alessandro & Colantonio, Emiliano, 2023. "On public policies in the energy transition: Evidence on the role of socio-technical regimes for renewable technologies," Energy Economics, Elsevier, vol. 128(C).
    69. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    70. Kiel, Daniel & Arnold, Christian & Voigt, Kai-Ingo, 2017. "The influence of the Industrial Internet of Things on business models of established manufacturing companies – A business level perspective," Technovation, Elsevier, vol. 68(C), pages 4-19.
    71. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).
    72. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    73. Murinde, Victor & Rizopoulos, Efthymios & Zachariadis, Markos, 2022. "The impact of the FinTech revolution on the future of banking: Opportunities and risks," International Review of Financial Analysis, Elsevier, vol. 81(C).
    74. Chung, Hyuk, 2018. "ICT investment-specific technological change and productivity growth in Korea: Comparison of 1996–2005 and 2006–2015," Telecommunications Policy, Elsevier, vol. 42(1), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    2. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    4. Zhong, Mei-Rui & Cao, Meng-Yuan & Zou, Han, 2022. "The carbon reduction effect of ICT: A perspective of factor substitution," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    6. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    7. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    8. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    9. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    10. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    11. Lei Fan & Yunyun Zhang & Meilin Jin & Qiang Ma & Jing Zhao, 2022. "Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain," Energies, MDPI, vol. 15(23), pages 1-18, November.
    12. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    13. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    14. Wang, Jen Chun, 2022. "Understanding the energy consumption of information and communications equipment: A case study of schools in Taiwan," Energy, Elsevier, vol. 249(C).
    15. Shahbaz, Muhammad & Wang, Jianda & Dong, Kangyin & Zhao, Jun, 2022. "The impact of digital economy on energy transition across the globe: The mediating role of government governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Lin, Boqiang & Huang, Chenchen, 2023. "Nonlinear relationship between digitization and energy efficiency: Evidence from transnational panel data," Energy, Elsevier, vol. 276(C).
    17. Xiaohong Liu, 2023. "Impacts of Environmental Pollution and Digital Economy on the New Energy Industry," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    18. Theile, Philipp & Farag, Markos & Kopp, Thomas, 2022. "Does information substitute or complement energy? - A mediation analysis of their relationship in European economies," VfS Annual Conference 2022 (Basel): Big Data in Economics 264123, Verein für Socialpolitik / German Economic Association.
    19. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    20. Asif Khan & Wu Ximei, 2022. "Digital Economy and Environmental Sustainability: Do Information Communication and Technology (ICT) and Economic Complexity Matter?," IJERPH, MDPI, vol. 19(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.