IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003276.html
   My bibliography  Save this article

Techno-economic analysis of various configurations of stand-alone PV-RO systems for Pakistan

Author

Listed:
  • Ali, Haider
  • Siddiqui, Muhammad Usama
  • Ammar,
  • Aswani, Muhammad Ahsan
  • Umer, Muhammad
  • Khan, Muhammad Ismail

Abstract

The global water scarcity crisis has led to increased demand for reverse osmosis (RO) desalination technology. In response to the rising global temperatures, there is a growing focus on renewable energy sources such as solar photovoltaic (PV) and wind energy to power small-scale RO plants. This paper presents a comprehensive techno-economic analysis of stand-alone photovoltaic reverse osmosis (PV-RO) systems in Pakistan. It focuses on the design and optimization of PV-RO systems for Karachi and Lahore, evaluating the systems with and without energy recovery devices. A parametric study was conducted to optimize system performance, considering various configurations. The analysis includes a comparison of costs when operating with PV, diesel, and grid power. It was found that for Karachi, a four-stage PV-RO system without an energy recovery device provides water at $1.359 per cubic meter, while in Lahore, a three-stage system with an energy recovery device achieves $1.336 per cubic meter. These systems offer significant annual savings compared to diesel-powered systems, with Karachi and Lahore saving up to $10,138 and $17,664 respectively over ten years. The findings of this study show that PV-RO systems, especially those with multiple stages and energy recovery devices, offer a cost-effective and sustainable solution for water desalination in these regions.

Suggested Citation

  • Ali, Haider & Siddiqui, Muhammad Usama & Ammar, & Aswani, Muhammad Ahsan & Umer, Muhammad & Khan, Muhammad Ismail, 2024. "Techno-economic analysis of various configurations of stand-alone PV-RO systems for Pakistan," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003276
    DOI: 10.1016/j.renene.2024.120262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.