IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014234.html
   My bibliography  Save this article

Economy-wide assessment of achieving carbon neutrality in China's power sector: A computable general equilibrium analysis

Author

Listed:
  • Teng, Qiang
  • Zhang, Yu-Fei
  • Jiang, Hong-Dian
  • Liang, Qiao-Mei

Abstract

The low-carbon transition in the power sector is essential for realising carbon peak and neutrality goals. However, there is a lack of research assessing the policy mix needed to achieve ambitious targets such as power sector's carbon neutrality. Therefore, using a computable general equilibrium model with a detailed power technology module, this study evaluates the macroeconomic and environmental impacts of four abatement approaches for achieving carbon neutrality in China's power sector. Results show that, first, subsidising renewable electricity combined with carbon pricing is a relatively optimal means of achieving power sector's carbon neutrality, with the lowest carbon price and the least loss to the macroeconomy and household welfare. Moreover, it will increase the renewable energy proportion most strongly, also exerting the superior co-benefits on pollutants. Second, subsidising CCS combined with carbon pricing is the least advantageous mean. It causes the largest loss of both GDP and household welfare, and the promotion effects of renewable energy and co-benefits are relatively weak. Third, considering the carbon neutrality goal in China's power sector, if subsidised renewable electricity and carbon pricing are adopted, the targeted measures for pollutants could be significantly relaxed, whereas combined CCS subsidies and carbon pricing can moderately weak measures intensity for pollutant.

Suggested Citation

  • Teng, Qiang & Zhang, Yu-Fei & Jiang, Hong-Dian & Liang, Qiao-Mei, 2023. "Economy-wide assessment of achieving carbon neutrality in China's power sector: A computable general equilibrium analysis," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014234
    DOI: 10.1016/j.renene.2023.119508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breton, Michèle & Mirzapour, Hossein, 2016. "Welfare implication of reforming energy consumption subsidies," Energy Policy, Elsevier, vol. 98(C), pages 232-240.
    2. Jiang, Hong-Dian & Xue, Mei-Mei & Liang, Qiao-Mei & Masui, Toshihiko & Ren, Zhong-Yuan, 2022. "How do demand-side policies contribute to the electrification and decarburization of private transportation in China? A CGE-based analysis," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    4. Ghaith, Ahmad F. & Epplin, Francis M., 2017. "Consequences of a carbon tax on household electricity use and cost, carbon emissions, and economics of household solar and wind," Energy Economics, Elsevier, vol. 67(C), pages 159-168.
    5. Wang, Xiong & Li, Jingyao & Ren, Xiaohang, 2022. "Asymmetric causality of economic policy uncertainty and oil volatility index on time-varying nexus of the clean energy, carbon and green bond," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Zhaohua Wang & Hao Li & Bin Zhang & Bo Wang & Hao Li & Xin Tian & Jiang Lin & Wei Feng, 2023. "Unequal residential heating burden caused by combined heat and power phase-out under climate goals," Nature Energy, Nature, vol. 8(8), pages 881-890, August.
    7. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    8. Dev Millstein & Ryan Wiser & Mark Bolinger & Galen Barbose, 2017. "The climate and air-quality benefits of wind and solar power in the United States," Nature Energy, Nature, vol. 2(9), pages 1-10, September.
    9. Jing-Li Fan & Jingying Fu & Xian Zhang & Kai Li & Wenlong Zhou & Klaus Hubacek & Johannes Urpelainen & Shuo Shen & Shiyan Chang & Siyue Guo & Xi Lu, 2023. "Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation," Nature Climate Change, Nature, vol. 13(8), pages 807-815, August.
    10. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
    11. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    12. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    13. Andor, Mark & Voss, Achim, 2016. "Optimal renewable-energy promotion: Capacity subsidies vs. generation subsidies," Resource and Energy Economics, Elsevier, vol. 45(C), pages 144-158.
    14. Li, Yiying & Yan, Cheng & Ren, Xiaohang, 2023. "Do uncertainties affect clean energy markets? Comparisons from a multi-frequency and multi-quantile framework," Energy Economics, Elsevier, vol. 121(C).
    15. Tostado-Véliz, Marcos & Liang, Yingqi & Hasanien, Hany M. & Turky, Rania A. & Martínez-Moreno, Juan & Jurado, Francisco, 2023. "Robust optimal coordination of active distribution networks and energy communities with high penetration of renewables," Renewable Energy, Elsevier, vol. 218(C).
    16. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    17. Woo, C.K. & Chen, Y. & Zarnikau, J. & Olson, A. & Moore, J. & Ho, T., 2018. "Carbon trading’s impact on California’s real-time electricity market prices," Energy, Elsevier, vol. 159(C), pages 579-587.
    18. Jiang, Hong-Dian & Liu, Li-Jing & Dong, Kangyin & Fu, Yu-Wei, 2022. "How will sectoral coverage in the carbon trading system affect the total oil consumption in China? A CGE-based analysis," Energy Economics, Elsevier, vol. 110(C).
    19. Klaus Conrad & Michael Schröder, 1991. "The control of CO 2 emissions and its economic impact: An AGE model for a german state," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 1(3), pages 289-312, September.
    20. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    21. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
    22. Pradhan, Basanta K. & Ghosh, Joydeep, 2022. "A computable general equilibrium (CGE) assessment of technological progress and carbon pricing in India's green energy transition via furthering its renewable capacity," Energy Economics, Elsevier, vol. 106(C).
    23. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    24. Hong-Dian Jiang & Mei-Mei Xue & Kang-Yin Dong & Qiao-Mei Liang, 2022. "How will natural gas market reforms affect carbon marginal abatement costs? Evidence from China," Economic Systems Research, Taylor & Francis Journals, vol. 34(2), pages 129-150, April.
    25. Turner, Karen & Race, Julia & Alabi, Oluwafisayo & Katris, Antonios & Swales, J. Kim, 2021. "Policy options for funding carbon capture in regional industrial clusters: What are the impacts and trade-offs involved in compensating industry competitiveness loss?," Ecological Economics, Elsevier, vol. 184(C).
    26. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    27. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    28. Qiao-Mei Liang & Qian Wang & Yi-Ming Wei, 2013. "Assessing the Distributional Impacts of Carbon Tax among Households across Different Income Groups: The Case of China," Energy & Environment, , vol. 24(7-8), pages 1323-1346, December.
    29. Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    30. Jianxiao Wang & Liudong Chen & Zhenfei Tan & Ershun Du & Nian Liu & Jing Ma & Mingyang Sun & Canbing Li & Jie Song & Xi Lu & Chin-Woo Tan & Guannan He, 2023. "Inherent spatiotemporal uncertainty of renewable power in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    2. Jiang, Hong-Dian & Dong, Kangyin & Qing, Jing & Teng, Qiang, 2023. "The role of technical change in low-carbon transformation and crises in the electricity market: A CGE analysis with R&D investment," Energy Economics, Elsevier, vol. 125(C).
    3. Jiang, Hong-Dian & Xue, Mei-Mei & Liang, Qiao-Mei & Masui, Toshihiko & Ren, Zhong-Yuan, 2022. "How do demand-side policies contribute to the electrification and decarburization of private transportation in China? A CGE-based analysis," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    5. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    6. Qianyi Du & Haoran Pan & Shuang Liang & Xiaoxue Liu, 2023. "Can Green Credit Policies Accelerate the Realization of the Dual Carbon Goal in China? Examination Based on an Endogenous Financial CGE Model," IJERPH, MDPI, vol. 20(5), pages 1-26, March.
    7. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    9. Willenbockel, Dirk, 2017. "Macroeconomic Effects of a Low-Carbon Electricity Transition in Kenya and Ghana: An Exploratory Dynamic General Equilibrium Analysis," MPRA Paper 78070, University Library of Munich, Germany.
    10. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    11. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Wei, Yi-Ming & Liang, Qiao-Mei, 2016. "Distributional effects of carbon taxation," Applied Energy, Elsevier, vol. 184(C), pages 1123-1131.
    12. Peters, Jeffrey C. & Hertel, Thomas W., 2016. "The database–modeling nexus in integrated assessment modeling of electric power generation," Energy Economics, Elsevier, vol. 56(C), pages 107-116.
    13. Ruben Bibas & Aurélie Méjean, 2014. "Potential and limitations of bioenergy for low carbon transitions," Climatic Change, Springer, vol. 123(3), pages 731-761, April.
    14. Yun-Fei Yao & Qiao-Mei Liang, 2016. "Approaches to carbon allowance allocation in China: a computable general equilibrium analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 333-351, November.
    15. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    16. Bao, Qin & Tang, Ling & Zhang, ZhongXiang & Wang, Shouyang, 2013. "Impacts of border carbon adjustments on China's sectoral emissions: Simulations with a dynamic computable general equilibrium model," China Economic Review, Elsevier, vol. 24(C), pages 77-94.
    17. Rodrigues, Renato & Linares, Pedro, 2015. "Electricity load level detail in computational general equilibrium – part II – welfare impacts of a demand response program," Energy Economics, Elsevier, vol. 47(C), pages 52-67.
    18. Abrell, Jan & Weigt, Hannes, 2008. "The Interaction of Emissions Trading and Renewable Energy Promotion," MPRA Paper 65658, University Library of Munich, Germany.
    19. Venkatraman Indrajayanthan & Nalin Kant Mohanty & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2022. "Investigation on Current and Prospective Energy Transition Scenarios in Indian Landscape Using Integrated SWOT-MCDA Methodology," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    20. Yidan Chen & Jiang Lin & David Roland-Holst & Xu Liu & Can Wang, 2023. "Declining Renewable Costs, Emissions Trading, and Economic Growth: China’s Power System at the Crossroads," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.