IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011370.html
   My bibliography  Save this article

In-situ construction of N-doped hollow carbon polyhedral cage anchored Co-Ni dual binding sites as nanoreactor for efficient real lignin oil hydrodeoxygenation

Author

Listed:
  • Zhu, Yingbo
  • Ma, Yulong
  • Sun, Yonggang
  • Wang, Liqiong
  • Ding, Jie
  • Zhong, Yudan
  • Zhang, Juan
  • Wang, Lei
  • Li, Yuanyuan

Abstract

Rational design multifunctional nanoreactor with high activity under H2-free/low-H2 conditions for lignin hydrodeoxygenation reaction (HDO) is attractive for sustainable energy conversion. Here, strategy for in-situ assembly-etching was proposed to prepare N-doped hollow carbon polyhedral cage anchored Co-Ni dual binding sites as nanoreactors (CoxNiy/NC). Its unique and controllable hollow structure exhibits high content of pyridine-N as Lewis-base site for adsorption of substrate, and in adjacent nitrogen defect sites as active metal anchors enabled the Co2Ni1/NC to perform perfect the hydrodeoxygenation of real lignin oil. The conversion of lignin pyrolytic oil to cycloalkane products was achieved under 0.2 MPa H2 and 3 h, the yield of total liquid product and the cyclohexane were 87.8 wt% and 53.4 wt%, respectively. This research provides a novel way for upgrading raw bio-oil to high-value products under low energy consuming conditions.

Suggested Citation

  • Zhu, Yingbo & Ma, Yulong & Sun, Yonggang & Wang, Liqiong & Ding, Jie & Zhong, Yudan & Zhang, Juan & Wang, Lei & Li, Yuanyuan, 2023. "In-situ construction of N-doped hollow carbon polyhedral cage anchored Co-Ni dual binding sites as nanoreactor for efficient real lignin oil hydrodeoxygenation," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011370
    DOI: 10.1016/j.renene.2023.119222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kong, Xiangchen & Liu, Chao & Wang, Xing & Fan, Yuyang & Xu, Weicong & Xiao, Rui, 2022. "Production of oxygen-containing fuels via supercritical methanol hydrodeoxygenation of lignin bio-oil over Cu/CuZnAlOx catalyst," Applied Energy, Elsevier, vol. 316(C).
    2. Zhang, Xinghua & Tang, Wenwu & Zhang, Qi & Wang, Tiejun & Ma, Longlong, 2018. "Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts," Applied Energy, Elsevier, vol. 227(C), pages 73-79.
    3. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    4. Lin, Feng & Ma, Yulong & Sun, Yonggang & Song, Zhi & Men, Xiuqin & Wu, Yuhua & Zhu, Yingbo & Gao, Tingting & Zhong, Yudan, 2022. "Selective hydrodeoxygenation of lignin model compound to renewable fuel precursors using two-dimensional nanosheet Ni/HZ5-NS catalyst," Renewable Energy, Elsevier, vol. 189(C), pages 1278-1291.
    5. Kuang, Yongqi & Li, Hao, 2021. "Targeted engineering of metal@hollow carbon spheres as nanoreactors for biomass hydrodeoxygenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mingqiang & Li, Hong & Wang, Yishuang & Tang, Zhiyuan & Dai, Wei & Li, Chang & Yang, Zhonglian & Wang, Jun, 2023. "Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol," Applied Energy, Elsevier, vol. 332(C).
    2. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    3. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    4. Jin, Wei & Gandara-Loe, Jesus & Pastor-Pérez, Laura & Villora-Picó, Juan J. & Sepúlveda-Escribano, Antonio & Rinaldi, Roberto & Reina, Tomas Ramirez, 2023. "Guaiacol hydrotreatment in an integrated APR-HDO process: Exploring the promoting effect of platinum on Ni–Pt catalysts and assessing methanol and glycerol as hydrogen sources," Renewable Energy, Elsevier, vol. 215(C).
    5. Shu, Riyang & Jiang, Hao & Xie, Long & Liu, Xiaozhou & Yin, Tao & Tian, Zhipeng & Wang, Chao & Chen, Ying, 2023. "Efficient hydrodeoxygenation of lignin-derived phenolic compounds by using Ru-based biochar catalyst coupled with silicotungstic acid," Renewable Energy, Elsevier, vol. 202(C), pages 1160-1168.
    6. Sharma, Vinit & Getahun, Tokuma & Verma, Minal & Villa, Alberto & Gupta, Neeraj, 2020. "Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Li, Zhiyu & Jiang, Enchen & Xu, Xiwei & Sun, Yan & Tu, Ren, 2020. "Hydrodeoxygenation of phenols, acids, and ketones as model bio-oil for hydrocarbon fuel over Ni-based catalysts modified by Al, La and Ga," Renewable Energy, Elsevier, vol. 146(C), pages 1991-2007.
    8. Li, Haowei & Ma, Hongwei & Zhao, Weijie & Li, Xuehui & Long, Jinxing, 2019. "Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: Effect of the catalyst calcination temperature," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Chen, Shanshuai & Yan, Puxiang & Yu, Xiaona & Zhu, Wanbin & Wang, Hongliang, 2023. "Conversion of lignin to high yields of aromatics over Ru–ZnO/SBA-15 bifunctional catalysts," Renewable Energy, Elsevier, vol. 215(C).
    11. Gao, Xueying & Li, Helong & Wang, Shuizhong & Liu, Zhenzhen & Ma, Jian-feng & Liu, Xing-e & Song, Guoyong, 2022. "Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 724-733.
    12. Song, Wenjing & Song, Mengxue & Cai, Wenqing & Li, Weichu & Jiang, Xingmao & Fang, Weiping & Lai, Weikun, 2022. "Efficient and stable SiO2-encapsulated NiPt/HY catalyst for catalytic cracking of β-O-4 linkage compound," Renewable Energy, Elsevier, vol. 198(C), pages 334-342.
    13. Hu, Lin & Guo, Xian-Hou & Wei, Xian-Yong & Liu, Fang-Jing & Xu, Mei-Ling & Liu, Tian-Long & Zhang, Feng-Bin, 2023. "Research on the influence of sequential isopropanolysis liquefaction on the composition of liquid tars and physicochemical structure evolution of renbei lignite," Energy, Elsevier, vol. 279(C).
    14. Li, Xiangping & Chen, Lei & Chen, Guanyi & Zhang, Jianguang & Liu, Juping, 2020. "The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation," Renewable Energy, Elsevier, vol. 149(C), pages 609-616.

    More about this item

    Keywords

    Lignin pyrolytic oil; Hollow nanoreactor; N-Doped carbon; Low H2 condition;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.