IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp492-501.html
   My bibliography  Save this article

CO2 behavior amidst the COVID-19 pandemic in the United Kingdom: The role of renewable and non-renewable energy development

Author

Listed:
  • Adebayo, Tomiwa Sunday
  • AbdulKareem, Hauwah K.K.
  • Bilal,
  • Kirikkaleli, Dervis
  • Shah, Muhammad Ibrahim
  • Abbas, Shujaat

Abstract

The spread of the COVID-19 pandemic since the end of 2019 has forced an unprecedented lockdown worldwide, and environmental quality was significantly affected by the pandemic and its induced lockdown. The objective of this study is to examine the role of renewable energy, non-renewable energy and COVID-19 case on CO2 emission in the context of United Kingdom. Several non-linear techniques such as Fourier ADL cointegration test, Non-Linear ARDL, Markov switching regression, and Breitung and Candelon (BC) causality test are employed to attain this objective. The result reveals that there is long run cointegration among the variables in this study. The results demonstrate that positive (negative) shift in renewable energy development decrease (increase) CO2 emissions while positive (negative) shocks in fossil fuel energy increase CO2 emissions. Moreover, negative (positive) variation in COVID case leads to a decrease (increase) in CO2 emissions. Moreover, an uni-directional causal impact was found to run from all the variables – renewable energy, fossil fuel, and COVID-19 case to CO2 emissions. Finally, several policy recommendations are provided.

Suggested Citation

  • Adebayo, Tomiwa Sunday & AbdulKareem, Hauwah K.K. & Bilal, & Kirikkaleli, Dervis & Shah, Muhammad Ibrahim & Abbas, Shujaat, 2022. "CO2 behavior amidst the COVID-19 pandemic in the United Kingdom: The role of renewable and non-renewable energy development," Renewable Energy, Elsevier, vol. 189(C), pages 492-501.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:492-501
    DOI: 10.1016/j.renene.2022.02.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    2. Vedat Yorucu & Dervis Kirikkaleli, 2021. "Nexus between Economic Stability and Political Stability in China and Japan," Economic Research Guardian, Weissberg Publishing, vol. 11(2), pages 182-193, December.
    3. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    4. Muhammad Jawad Sajid & Ernesto D. R. Santibanez Gonzalez, 2021. "The Impact of Direct and Indirect COVID-19 Related Demand Shocks on Sectoral CO 2 Emissions: Evidence from Major Asia Pacific Countries," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    6. Hao Yu & David M. Reiner & Hao Chen & Zhifu Mi, 2018. "A comparison of public preferences for different low-carbon energy technologies: Support for CCS, nuclear and wind energy in the United Kingdom," Working Papers EPRG 1810, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Aktar, Asikha & Alam, Md. Mahmudul & Al-Amin, Abul Quasem, 2021. "Global Economic Crisis, Energy Use, CO2 Emissions and Policy Roadmap amid COVID-19," OSF Preprints 69kje, Center for Open Science.
    9. Jeff Tollefson, 2021. "COVID curbed carbon emissions in 2020 — but not by much," Nature, Nature, vol. 589(7842), pages 343-343, January.
    10. Apergis, Nicholas & Payne, James E., 2010. "Coal consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(3), pages 1353-1359, March.
    11. Chen, Yulong & Zhao, Jincai & Lai, Zhizhu & Wang, Zheng & Xia, Haibin, 2019. "Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis," Renewable Energy, Elsevier, vol. 140(C), pages 341-353.
    12. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    13. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    14. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    15. Hamilton, James D., 2002. "On the interpretation of cointegration in the linear-quadratic inventory model," Journal of Economic Dynamics and Control, Elsevier, vol. 26(12), pages 2037-2049, October.
    16. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    17. Breitung, Jorg & Candelon, Bertrand, 2006. "Testing for short- and long-run causality: A frequency-domain approach," Journal of Econometrics, Elsevier, vol. 132(2), pages 363-378, June.
    18. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    19. Shah, Muhammad Ibrahim & Kirikkaleli, Dervis & Adedoyin, Festus Fatai, 2021. "Regime switching effect of COVID-19 pandemic on renewable electricity generation in Denmark," Renewable Energy, Elsevier, vol. 175(C), pages 797-806.
    20. Tomiwa Sunday Adebayo & Manuel Francisco Coelho & Dilber Çağlar Onbaşıoğlu & Husam Rjoub & Mário Nuno Mata & Paulo Viegas Carvalho & João Xavier Rita & Ibrahim Adeshola, 2021. "Modeling the Dynamic Linkage between Renewable Energy Consumption, Globalization, and Environmental Degradation in South Korea: Does Technological Innovation Matter?," Energies, MDPI, vol. 14(14), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Weilong & Han, Mengyao, 2023. "Mapping renewable energy transition worldwide: Gravity trajectory, contribution decomposition and income levels," Renewable Energy, Elsevier, vol. 206(C), pages 1265-1274.
    2. Yu, Zhichao & Kamran, Hafiz Waqas & Amin, Azka & Ahmed, Bilal & Peng, Sun, 2023. "Sustainable synergy via clean energy technologies and efficiency dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Chen, Jie & Huang, Shoujun & Ajaz, Tahseen, 2022. "Natural resources management and technological innovation under EKC framework: A glimmer of hope for sustainable environment in newly industrialized countries," Resources Policy, Elsevier, vol. 79(C).
    4. Samour, Ahmed & Moyo, Delani & Tursoy, Turgut, 2022. "Renewable energy, banking sector development, and carbon dioxide emissions nexus: A path toward sustainable development in South Africa," Renewable Energy, Elsevier, vol. 193(C), pages 1032-1040.
    5. Jahanger, Atif & Hossain, Mohammad Razib & Usman, Muhammad & Chukwuma Onwe, Joshua, 2023. "Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist?," Resources Policy, Elsevier, vol. 81(C).
    6. Wen, Jun & Hong, Liu & Khalid, Samia & Mahmood, Hamid & Zakaria, Muhammad, 2023. "Nexus between renewable energy consumption, foreign capital flows, and financial development: New evidence using CUP-FM and CUP-BC advanced methods," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 82-88.
    7. Bashir, Muhammad Adnan & Dengfeng, Zhao & Filipiak, Beata Zofia & Bilan, Yuriy & Vasa, László, 2023. "Role of economic complexity and technological innovation for ecological footprint in newly industrialized countries: Does geothermal energy consumption matter?," Renewable Energy, Elsevier, vol. 217(C).
    8. James Karmoh Sowah & Sema Yilmaz Genc & Rui Alexandre Castanho & Gualter Couto & Mehmet Altuntas & Dervis Kirikkaleli, 2023. "The Asymmetric and Symmetric Effect of Energy Productivity on Environmental Quality in the Era of Industry 4.0: Empirical Evidence from Portugal," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    9. Razzaq, Asif & Wang, Shizhen & Adebayo, Tomiwa Sunday & Saleh Al-Faryan, Mamdouh Abdulaziz, 2022. "The potency of natural resources on ecological sustainability in PIIGS economies," Resources Policy, Elsevier, vol. 79(C).
    10. Hafiz Muhammad Arslan & Ye Chengang & Bilal & Muhammad Siddique & Yusra Yahya, 2022. "Influence of Senior Executives Characteristics on Corporate Environmental Disclosures: A Bibliometric Analysis," JRFM, MDPI, vol. 15(3), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    2. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 173-185.
    3. Sebri, Maamar & Ben-Salha, Ousama, 2014. "On the causal dynamics between economic growth, renewable energy consumption, CO2 emissions and trade openness: Fresh evidence from BRICS countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 14-23.
    4. Ben Jebli, Mehdi & Ben Youssef, Slim & Apergis, Nicholas, 2014. "The dynamic interaction between combustible renewables and waste consumption and international tourism: The case of Tunisia," MPRA Paper 59827, University Library of Munich, Germany.
    5. Alper, Aslan & Oguz, Ocal, 2016. "The role of renewable energy consumption in economic growth: Evidence from asymmetric causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 953-959.
    6. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    7. Mohamed, Hassen & Ben Jebli, Mehdi & Ben Youssef, Slim, 2019. "Renewable and fossil energy, terrorism, economic growth, and trade: Evidence from France," Renewable Energy, Elsevier, vol. 139(C), pages 459-467.
    8. Das, Narasingha & Bera, Pinki & Panda, Deepak, 2022. "Can economic development & environmental sustainability promote renewable energy consumption in India?? Findings from novel dynamic ARDL simulations approach," Renewable Energy, Elsevier, vol. 189(C), pages 221-230.
    9. Zeb, Raheel & Salar, Laleena & Awan, Usama & Zaman, Khalid & Shahbaz, Muhammad, 2014. "Causal links between renewable energy, environmental degradation and economic growth in selected SAARC countries: Progress towards green economy," Renewable Energy, Elsevier, vol. 71(C), pages 123-132.
    10. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "Output, renewable and non-renewable energy consumption and international trade: Evidence from a panel of 69 countries," Renewable Energy, Elsevier, vol. 83(C), pages 799-808.
    11. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    12. Luqman, Muhammad & Ahmad, Najid & Bakhsh, Khuda, 2019. "Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model," Renewable Energy, Elsevier, vol. 139(C), pages 1299-1309.
    13. Soumen Rej & Barnali Nag & Md. Emran Hossain, 2022. "Can Renewable Energy and Export Help in Reducing Ecological Footprint of India? Empirical Evidence from Augmented ARDL Co-Integration and Dynamic ARDL Simulations," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    14. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    15. Alam, Md. Mahmudul & Murad, Md. Wahid, 2020. "The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries," Renewable Energy, Elsevier, vol. 145(C), pages 382-390.
    16. Amri, Fethi, 2016. "The relationship amongst energy consumption, foreign direct investment and output in developed and developing Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 694-702.
    17. Caraiani, Chirața & Lungu, Camelia I. & Dascălu, Cornelia, 2015. "Energy consumption and GDP causality: A three-step analysis for emerging European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 198-210.
    18. Tiba, Sofien & Frikha, Mohamed, 2019. "The controversy of the resource curse and the environment in the SDGs background: The African context," Resources Policy, Elsevier, vol. 62(C), pages 437-452.
    19. Shahbaz, Muhammad & Zeshan, Muhammad & Afza, Talat, 2012. "Is energy consumption effective to spur economic growth in Pakistan? New evidence from bounds test to level relationships and Granger causality tests," Economic Modelling, Elsevier, vol. 29(6), pages 2310-2319.
    20. Shahbaz, Muhammad & Rasool, Ghulam & Ahmed, Khalid & Mahalik, Mantu Kumar, 2016. "Considering the effect of biomass energy consumption on economic growth: Fresh evidence from BRICS region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1442-1450.

    More about this item

    Keywords

    UK; COVID; CO2; Renewable; Fossil fuel; Nonlinear;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:492-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.