IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p69-76.html
   My bibliography  Save this article

Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride

Author

Listed:
  • Demirci, Sahin
  • Yildiz, Mustafa
  • Inger, Erk
  • Sahiner, Nurettin

Abstract

Carbon materials can be readily prepared from wood derivatives, monosaccharaides such as pentose/hexose and/or polysaccharides in addition to many starting materials by treatment of thermal, chemical and hydrothermal methods. Here, the porous carbon (PC) particles were prepared by removal of silica particles from previously prepared carbon-silica composites by hydrothermal and carbonization process from sucrose. Then, PC particles were modified with polyethyleneimine (PEI) to prepared amine functionalized PC-PEI particles and protonated with hydrochloric acid, PC-PEI+. Finally, these prepared carbon-based particles were used as catalyst for H2 release from NaBH4 methanolysis and PC-PEI+ was found as the most effective catalyst at 25 °C with 4040 ± 126 mL H2. min−1.g−1 HGR value. The Ea value of 23.9 kJ/mol in H2 release reaction from NaBH4 methanolysis catalyzed by PC-PEI+ that is comparable and/or better than most of studies reported in literature. The activity% of PC-PEI+ catalyst was 72% after fifth consequential runs. Additionally, the regeneration ability of PC-PEI+ catalyst was also shown that after fifth regeneration process, there is only 5% decrease in activity%.

Suggested Citation

  • Demirci, Sahin & Yildiz, Mustafa & Inger, Erk & Sahiner, Nurettin, 2020. "Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride," Renewable Energy, Elsevier, vol. 147(P1), pages 69-76.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:69-76
    DOI: 10.1016/j.renene.2019.08.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    2. Jianfeng Mao & Duncan H. Gregory, 2015. "Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store," Energies, MDPI, vol. 8(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hongming & Xu, Guochang & Zhang, Lu & Wang, Wenfeng & Miao, Wenkang & Chen, Kangli & Cheng, Lina & Li, Yuan & Han, Shumin, 2020. "Ultrafine cobalt nanoparticles supported on carbon nanospheres for hydrolysis of sodium borohydride," Renewable Energy, Elsevier, vol. 162(C), pages 345-354.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexey I. Shinkevich, 2020. "Modeling the Efficiency of Using Digital Technologies of Energy and Resource Saving Technologies at Petrochemical Enterprises," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 1-6.
    2. Bashir, Muhammad Farhan & Ma, Beiling & Sharif, Arshian & Ao, Tong & Koca, Kemal, 2023. "Nuclear energy consumption, energy access and energy poverty: Policy implications for the COP27 and environmental sustainability," Technology in Society, Elsevier, vol. 75(C).
    3. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Craig M. Jensen & Etsuo Akiba & Hai-Wen Li, 2016. "Hydrides: Fundamentals and Applications," Energies, MDPI, vol. 9(4), pages 1-2, April.
    5. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    6. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    7. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    8. Dongmin Son & Joonrak Kim & Bongju Jeong, 2019. "Optimal Operational Strategy for Power Producers in Korea Considering Renewable Portfolio Standards and Emissions Trading Schemes," Energies, MDPI, vol. 12(9), pages 1-24, May.
    9. Alexey I. Shinkevich & Farida F. Galimulina & Yulia S. Polozhentseva & Alla A. Yarlychenko & Naira V. Barsegyan, 2021. "Computer Analysis of Energy and Resource Efficiency in the Context of Transformation of Petrochemical Supply Chains," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 529-536.
    10. Alexey I. Shinkevich & Svetlana S. Kudryavtseva & Irina G. Ershova, 2020. "Modelling of Energy Efficiency Factors of Petrochemical Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 465-470.
    11. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    12. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).
    13. Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.
    14. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    15. Carlos A. Castilla-Martinez & Romain Moury & Salem Ould-Amara & Umit B. Demirci, 2021. "Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances," Energies, MDPI, vol. 14(21), pages 1-50, October.
    16. Andrew Adewale Alola & Seyi Saint Akadiri & Ojonugwa Usman, 2021. "Domestic material consumption and greenhouse gas emissions in the EU‐28 countries: Implications for environmental sustainability targets," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 388-397, March.
    17. Joanna Hałacz & Aldona Skotnicka-Siepsiak & Maciej Neugebauer, 2020. "Assessment of Reducing Pollutant Emissions in Selected Heating and Ventilation Systems in Single-Family Houses," Energies, MDPI, vol. 13(5), pages 1-19, March.
    18. Simona Bigerna and Carlo Andrea Bollino, 2016. "Optimal Price Design in the Wholesale Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    19. Azam, Anam & Rafiq, Muhammad & Shafique, Muhammad & Zhang, Haonan & Yuan, Jiahai, 2021. "Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis," Energy, Elsevier, vol. 219(C).
    20. Fernando deLlano-Paz & Paulino Martinez Fernandez & Isabel Soares, 2016. "The effects of different CCS technological scenarios on EU low-carbon generation mix," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1477-1500, October.

    More about this item

    Keywords

    Porous carbon particle; Amine modified carbon particle; Metal-free catalyst; Carbon-based catalyst; H2 production;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:69-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.