IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v126y2024ics0305048324000148.html
   My bibliography  Save this article

Dynamic repositioning in bike-sharing systems with uncertain demand: An improved rolling horizon framework

Author

Listed:
  • Li, Xiang
  • Wang, Xianzhe
  • Feng, Ziyan

Abstract

The bike-sharing system (BSS) serves as a vital shared mobility mechanism, providing first- and last-mile services in urban transportation. However, one ongoing challenge in the BSS is the spatiotemporal imbalance caused by fluctuating user demand. To address this issue, this paper studies a dynamic bike repositioning problem under scenario-based demand to achieve a balance in inventory levels for electronic fences. Specifically, a multi-period two-stage stochastic model is proposed to make the trade-off between operational costs and service quality. The model incorporates a vehicle no-return (VNR) strategy, which allows vehicles to remain at the last station at the end of each period, awaiting the next repositioning task. To solve the model, an improved rolling horizon framework is introduced to effectively handle the temporal dimension complexity of the multi-period problem. Then a customized hybrid heuristic algorithm based on parallel genetic algorithm and variable neighborhood search is developed to obtain high-quality solutions. To validate the effectiveness and applicability of the proposed method, small-scale and practical-scale numerical experiments are specifically conducted based on real-world BSS data from Beijing, China. The results demonstrate the proposed method (i) creates a substantial reduction in the number of unmet demands when multiple scenarios potentially occur compared to the determined model, (ii) yields an average reduction of 29.04% in operational costs compared to the scheme without the VNR strategy, (iii) overcomes the short-sightedness inherent in the conventional single-period rolling horizon approach, exhibiting closer to optimal performance, and (iv) is superior to baseline approaches in terms of solution quality and efficiency.

Suggested Citation

  • Li, Xiang & Wang, Xianzhe & Feng, Ziyan, 2024. "Dynamic repositioning in bike-sharing systems with uncertain demand: An improved rolling horizon framework," Omega, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:jomega:v:126:y:2024:i:c:s0305048324000148
    DOI: 10.1016/j.omega.2024.103047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324000148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:126:y:2024:i:c:s0305048324000148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.