IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v176y2020ics0047259x19301423.html
   My bibliography  Save this article

Simultaneous confidence band for stationary covariance function of dense functional data

Author

Listed:
  • Wang, Jiangyan
  • Cao, Guanqun
  • Wang, Li
  • Yang, Lijian

Abstract

The inference via simultaneous confidence band is studied for stationary covariance function of dense functional data. A two-stage estimation procedure is proposed based on spline approximation, the first stage involving estimation of all the individual trajectories and the second stage involving estimation of the covariance function through smoothing the empirical covariance function. The proposed covariance estimator is smooth and as efficient as the oracle estimator when all individual trajectories are known. An asymptotic simultaneous confidence band (SCB) is developed for the true covariance function, and the coverage probabilities are shown to be asymptotically correct. Intensive simulation experiments are conducted to demonstrate the performance of the proposed estimator and SCB. The proposed method is also illustrated with a real data example.

Suggested Citation

  • Wang, Jiangyan & Cao, Guanqun & Wang, Li & Yang, Lijian, 2020. "Simultaneous confidence band for stationary covariance function of dense functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:jmvana:v:176:y:2020:i:c:s0047259x19301423
    DOI: 10.1016/j.jmva.2019.104584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19301423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Staicu, Ana-Maria & Di, Chong-Zhi, 2009. "Generalized Multilevel Functional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1550-1561.
    2. Lajos Horváth & Piotr Kokoszka & Ron Reeder, 2013. "Estimation of the mean of functional time series and a two-sample problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 103-122, January.
    3. Guo, Jia & Zhou, Bu & Zhang, Jin-Ting, 2018. "Testing the equality of several covariance functions for functional data: A supremum-norm based test," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 15-26.
    4. J. Sanderson & P. Fryzlewicz & M. W. Jones, 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," Biometrika, Biometrika Trust, vol. 97(2), pages 435-446.
    5. Ursa Pantle & Volker Schmidt & Evgeny Spodarev, 2010. "On the Estimation of Integrated Covariance Functions of Stationary Random Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 47-66, March.
    6. Sanderson, Jean & Fryzlewicz, Piotr & Jones, M. W., 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," LSE Research Online Documents on Economics 29141, London School of Economics and Political Science, LSE Library.
    7. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    8. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    9. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent Classification of Nonstationary Time Series Using Stochastic Wavelet Representations," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 299-312.
    10. Guanqun Cao & Lijian Yang & David Todem, 2012. "Simultaneous inference for the mean function based on dense functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 359-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Telschow, Fabian J.E. & Davenport, Samuel & Schwartzman, Armin, 2022. "Functional delta residuals and applications to simultaneous confidence bands of moment based statistics," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Kun Huang & Sijie Zheng & Lijian Yang, 2022. "Inference for dependent error functional data with application to event-related potentials," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1100-1120, December.
    3. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    2. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    3. Aykroyd, Robert G. & Barber, Stuart & Miller, Luke R., 2016. "Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 351-362.
    4. Cao, Guanqun & Wang, Li, 2018. "Simultaneous inference for the mean of repeated functional data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 279-295.
    5. Mingfei Dong & Donatello Telesca & Catherine Sugar & Frederick Shic & Adam Naples & Scott P. Johnson & Beibin Li & Adham Atyabi & Minhang Xie & Sara J. Webb & Shafali Jeste & Susan Faja & April R. Lev, 2023. "A Functional Model for Studying Common Trends Across Trial Time in Eye Tracking Experiments," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 261-287, April.
    6. Yu-Ru Su & Chong-Zhi Di & Li Hsu, 2017. "Hypothesis testing in functional linear models," Biometrics, The International Biometric Society, vol. 73(2), pages 551-561, June.
    7. Yueying Wang & Guannan Wang & Li Wang & R. Todd Ogden, 2020. "Simultaneous confidence corridors for mean functions in functional data analysis of imaging data," Biometrics, The International Biometric Society, vol. 76(2), pages 427-437, June.
    8. Liebl, Dominik, 2019. "Inference for sparse and dense functional data with covariate adjustments," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 315-335.
    9. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    10. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    11. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    12. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    13. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.
    14. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    15. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    16. Justin Petrovich & Matthew Reimherr & Carrie Daymont, 2022. "Highly irregular functional generalized linear regression with electronic health records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 806-833, August.
    17. Julia Wrobel & Vadim Zipunnikov & Jennifer Schrack & Jeff Goldsmith, 2019. "Registration for exponential family functional data," Biometrics, The International Biometric Society, vol. 75(1), pages 48-57, March.
    18. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
    19. Euan T. McGonigle & Rebecca Killick & Matthew A. Nunes, 2022. "Trend locally stationary wavelet processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 895-917, November.
    20. Lijie Gu & Li Wang & Wolfgang Härdle & Lijian Yang, 2014. "A simultaneous confidence corridor for varying coefficient regression with sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 806-843, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:176:y:2020:i:c:s0047259x19301423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.