IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v167y2018icp181-194.html
   My bibliography  Save this article

On model-based clustering of skewed matrix data

Author

Listed:
  • Melnykov, Volodymyr
  • Zhu, Xuwen

Abstract

The existing finite mixture modeling and model-based clustering literature focuses primarily on the analysis of multivariate data observed in the form of vectors, with each element representing a specific feature. In this setting, multivariate Gaussian mixture models have been the most commonly used. Due to severe modeling issues observed when normal components cannot provide adequate fit to groups, much attention has been paid to developing models capable of accounting for skewness in data. In our work, we target the problem of mixture modeling with components that can handle skewness in matrix-valued data. The proposed developments open a wide range of possible modeling capabilities, with numerous applications, as illustrated in this paper. A novel matrix mixture model is proposed. Its skewness parameters enjoy appealing interpretability. The corresponding estimation procedure and various ways of parameterization are discussed. Comprehensive simulation studies and applications to real-life datasets illustrate the efficiency of the proposed developments, supported by good results.

Suggested Citation

  • Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
  • Handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:181-194
    DOI: 10.1016/j.jmva.2018.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17305122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boldea, Otilia & Magnus, Jan R., 2009. "Maximum Likelihood Estimation of the Multivariate Normal Mixture Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1539-1549.
    2. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    3. Kiefer, Nicholas M, 1978. "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," Econometrica, Econometric Society, vol. 46(2), pages 427-434, March.
    4. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    5. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    6. Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Prates, Marcos O., 2012. "Multivariate mixture modeling using skew-normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 126-142, January.
    7. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire & McNicholas, Paul D. & Karlis, Dimitris, 2016. "Clustering with the multivariate normal inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 18-30.
    8. Sharon Lee & Geoffrey McLachlan, 2013. "Rejoinder to the discussion of “Model-based clustering and classification with non-normal mixture distributions”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 473-479, November.
    9. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    10. Charles Lindsey & Simon Sheather, 2010. "Power transformation via multivariate Box–Cox," Stata Journal, StataCorp LP, vol. 10(1), pages 69-81, March.
    11. Melnykov, Volodymyr, 2016. "Model-based biclustering of clickstream data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 31-45.
    12. Sharon Lee & Geoffrey McLachlan, 2013. "Model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 427-454, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
    2. Michael P. B. Gallaugher & Paul D. McNicholas, 2020. "Mixtures of skewed matrix variate bilinear factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 415-434, June.
    3. Xuwen Zhu & Yana Melnykov, 2022. "On Finite Mixture Modeling of Change-point Processes," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 3-22, March.
    4. Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
    5. Xuwen Zhu & Shuchismita Sarkar & Volodymyr Melnykov, 2022. "MatTransMix: an R Package for Matrix Model-Based Clustering and Parsimonious Mixture Modeling," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 147-170, March.
    6. Alex Sharp & Glen Chalatov & Ryan P. Browne, 2023. "A dual subspace parsimonious mixture of matrix normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 801-822, September.
    7. Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
    8. Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    9. Punzo, Antonio & Bagnato, Luca, 2021. "Modeling the cryptocurrency return distribution via Laplace scale mixtures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    10. Donatella Vicari & Paolo Giordani, 2023. "CPclus: Candecomp/Parafac Clustering Model for Three-Way Data," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 432-465, July.
    11. Kozubowski, Tomasz J. & Mazur, Stepan & Podgorski, Krysztof, 2022. "Matrix Variate Generalized Laplace Distributions," Working Papers 2022:7, Örebro University, School of Business.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    2. Yana Melnykov & Xuwen Zhu & Volodymyr Melnykov, 2021. "Transformation mixture modeling for skewed data groups with heavy tails and scatter," Computational Statistics, Springer, vol. 36(1), pages 61-78, March.
    3. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    4. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    6. Volodymyr Melnykov & Xuwen Zhu, 2019. "Studying crime trends in the USA over the years 2000–2012," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 325-341, March.
    7. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    8. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    9. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    10. Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.
    11. Volodymyr Melnykov & Xuwen Zhu, 2019. "An extension of the K-means algorithm to clustering skewed data," Computational Statistics, Springer, vol. 34(1), pages 373-394, March.
    12. Naderi, Mehrdad & Hung, Wen-Liang & Lin, Tsung-I & Jamalizadeh, Ahad, 2019. "A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum–Saunders distributions and its application to extrasolar planets," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 126-138.
    13. Wang, Wan-Lun, 2015. "Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 223-235.
    14. Melnykov, Volodymyr, 2013. "On the distribution of posterior probabilities in finite mixture models with application in clustering," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 175-189.
    15. Melnykov, Volodymyr & Melnykov, Igor, 2012. "Initializing the EM algorithm in Gaussian mixture models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1381-1395.
    16. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    17. Wan-Lun Wang & Tsung-I Lin, 2023. "Model-based clustering via mixtures of unrestricted skew normal factor analyzers with complete and incomplete data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 787-817, September.
    18. Wan-Lun Wang & Tsung-I Lin, 2015. "Robust model-based clustering via mixtures of skew-t distributions with missing information," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 423-445, December.
    19. Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
    20. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:181-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.