IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v28y2012i1p204-215.html
   My bibliography  Save this article

Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD

Author

Listed:
  • Zhang, Jie
  • Thomas, Lyn C.

Abstract

Estimating the recovery rate and recovery amount has become important in consumer credit due to the new Basel Accord regulation and the increase in the number of defaulters as a result of the recession. We compare linear regression and survival analysis models for modelling recovery rates and recovery amounts, in order to predict the loss given default (LGD) for unsecured consumer loans or credit cards. We also look at the advantages and disadvantages of using single and mixture distribution models for estimating these quantities.

Suggested Citation

  • Zhang, Jie & Thomas, Lyn C., 2012. "Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD," International Journal of Forecasting, Elsevier, vol. 28(1), pages 204-215.
  • Handle: RePEc:eee:intfor:v:28:y:2012:i:1:p:204-215
    DOI: 10.1016/j.ijforecast.2010.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207010001160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2010.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A Matuszyk & C Mues & L C Thomas, 2010. "Modelling LGD for unsecured personal loans: decision tree approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 393-398, March.
    2. D. F. Benoit & D. Van Den Poel, 2009. "Benefits of Quantile Regression for the Analysis of Customer Lifetime Value in a Contractual Setting: An Application in Financial Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/551, Ghent University, Faculty of Economics and Business Administration.
    3. Joe Whittaker & Chris Whitehead & Mark Somers, 2005. "The neglog transformation and quantile regression for the analysis of a large credit scoring database," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(5), pages 863-878, November.
    4. Qi, Min & Yang, Xiaolong, 2009. "Loss given default of high loan-to-value residential mortgages," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 788-799, May.
    5. Bernd Engelmann & Robert Rauhmeier (ed.), 2006. "The Basel II Risk Parameters," Springer Books, Springer, number 978-3-540-33087-5, September.
    6. Somers, Mark & Whittaker, Joe, 2007. "Quantile regression for modelling distributions of profit and loss," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1477-1487, December.
    7. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    8. Dermine, J. & de Carvalho, C. Neto, 2006. "Bank loan losses-given-default: A case study," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1219-1243, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    2. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    3. Starosta, Wojciech, 2021. "Loss given default decomposition using mixture distributions of in-default events," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1187-1199.
    4. Yurchenko, Yurii, 2019. "The impact of macroeconomic factors on collateral value within the framework of expected credit loss calculation," MPRA Paper 97135, University Library of Munich, Germany.
    5. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    6. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    7. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    8. Emily Johnston Ross & Lynn Shibut, 2021. "Loss Given Default, Loan Seasoning and Financial Fragility: Evidence from Commercial Real Estate Loans at Failed Banks," The Journal of Real Estate Finance and Economics, Springer, vol. 63(4), pages 630-661, November.
    9. Chiang, Shu Ling & Yang, Tyler T. & Tsai, Ming Shann, 2016. "Assessing mortgage servicing rights using a reduced-form model: Considering the effects of interest rate risks, prepayment and default risks, and random state variables," Journal of Housing Economics, Elsevier, vol. 32(C), pages 29-46.
    10. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    11. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    12. Thomas, L.C. & Matuszyk, A. & Moore, A., 2012. "Comparing debt characteristics and LGD models for different collections policies," International Journal of Forecasting, Elsevier, vol. 28(1), pages 196-203.
    13. Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
    14. Agata M. Lozinskaia & Evgeniy M. Ozhegov & Alexander M. Karminsky, 2016. "Discontinuity in Relative Credit Losses: Evidence from Defaults on Government-Insured Residential Mortgages," HSE Working papers WP BRP 55/FE/2016, National Research University Higher School of Economics.
    15. Krüger, Steffen & Rösch, Daniel, 2017. "Downturn LGD modeling using quantile regression," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 42-56.
    16. Benjamin Bade & Daniel Rösch & Harald Scheule, 2011. "Default and Recovery Risk Dependencies in a Simple Credit Risk Model," European Financial Management, European Financial Management Association, vol. 17(1), pages 120-144, January.
    17. Stefan Hlawatsch & Sebastian Ostrowski, 2010. "Simulation and Estimation of Loss Given Default," FEMM Working Papers 100010, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    18. Johannes Kriebel & Kevin Yam, 2020. "Forecasting recoveries in debt collection: Debt collectors and information production," European Financial Management, European Financial Management Association, vol. 26(3), pages 537-559, June.
    19. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    20. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:1:p:204-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.