IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp506-515.html
   My bibliography  Save this article

Allocation of biomass resources for minimising energy system greenhouse gas emissions

Author

Listed:
  • Bentsen, Niclas Scott
  • Jack, Michael W.
  • Felby, Claus
  • Thorsen, Bo Jellesmark

Abstract

The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 109 GJ in 2005 to 5.7 × 109 GJ in 2020.

Suggested Citation

  • Bentsen, Niclas Scott & Jack, Michael W. & Felby, Claus & Thorsen, Bo Jellesmark, 2014. "Allocation of biomass resources for minimising energy system greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 506-515.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:506-515
    DOI: 10.1016/j.energy.2014.03.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    2. Luis C. Rodriguez & Deborah O'Connell, 2011. "Balance the blend of food and fuel," Nature, Nature, vol. 476(7360), pages 283-283, August.
    3. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    4. Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
    5. Lamers, Patrick & Junginger, Martin & Hamelinck, Carlo & Faaij, André, 2012. "Developments in international solid biofuel trade—An analysis of volumes, policies, and market factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3176-3199.
    6. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
    7. Peter Fairley, 2011. "Introduction: Next generation biofuels," Nature, Nature, vol. 474(7352), pages 2-5, June.
    8. Graham, Paul W. & Brinsmead, T.S. & Reedman, Luke J., 2011. "An assessment of competition for biomass resources within the energy and transport sectors," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100553, Australian Agricultural and Resource Economics Society.
    9. Gielen, D. J. & de Feber, M. A. P. C. & Bos, A. J. M. & Gerlagh, T., 2001. "Biomass for energy or materials?: A Western European systems engineering perspective," Energy Policy, Elsevier, vol. 29(4), pages 291-302, March.
    10. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    11. Papapostolou, Christiana & Kondili, Emilia & Kaldellis, John K., 2011. "Development and implementation of an optimisation model for biofuels supply chain," Energy, Elsevier, vol. 36(10), pages 6019-6026.
    12. Felix Creutzig & Alexander Popp & Richard Plevin & Gunnar Luderer & Jan Minx & Ottmar Edenhofer, 2012. "Reconciling top-down and bottom-up modelling on future bioenergy deployment," Nature Climate Change, Nature, vol. 2(5), pages 320-327, May.
    13. Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.
    14. Bernier, Etienne & Maréchal, François & Samson, Réjean, 2010. "Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective," Energy, Elsevier, vol. 35(2), pages 1121-1128.
    15. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    16. Berndes, Goran & Hansson, Julia, 2007. "Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels," Energy Policy, Elsevier, vol. 35(12), pages 5965-5979, December.
    17. Alan Swinbank, 2009. "EU Policies on Bioenergy and their Potential Clash with the WTO," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(3), pages 485-503, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Hansson & Roman Hackl, 2016. "The potential influence of sustainability criteria on the European Union pellets market—the example of Sweden," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 413-429, July.
    2. Al-Mayyahi, Mohmmad A. & Hoadley, Andrew F.A. & Rangaiah, G.P., 2013. "A novel graphical approach to target CO2 emissions for energy resource planning and utility system optimization," Applied Energy, Elsevier, vol. 104(C), pages 783-790.
    3. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
    4. Purkus, Alexandra & Gawel, Erik & Thrän, Daniela, 2012. "Bioenergy governance between market and government failures: A new institutional economics perspective," UFZ Discussion Papers 13/2012, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    6. Clancy, John Matthew & Curtis, John & Ó’Gallachóir, Brian, 2018. "Modelling national policy making to promote bioenergy in heat, transport and electricity to 2030 – Interactions, impacts and conflicts," Energy Policy, Elsevier, vol. 123(C), pages 579-593.
    7. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    8. Conor B. Hamill & Raad Khraishi & Simona Gherghel & Jerrard Lawrence & Salvatore Mercuri & Ramin Okhrati & Greig A. Cowan, 2023. "Agent-based Modelling of Credit Card Promotions," Papers 2311.01901, arXiv.org, revised Nov 2023.
    9. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2015. "Economics of co-firing coal and biomass: An application to Western Canada," Energy Economics, Elsevier, vol. 48(C), pages 7-17.
    10. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    11. António Madureira & Nico Baken & Harry Bouwman, 2011. "Value of digital information networks: a holonic framework," Netnomics, Springer, vol. 12(1), pages 1-30, April.
    12. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    13. Francesco Lamperti & Antoine Mandel & Mauro Napoletano & Alessandro Sapio & Andrea Roventini & Tomas Balint & Igor Khorenzhenko, 2017. "Taming macroeconomic instability," SciencePo Working papers Main hal-03399574, HAL.
    14. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    15. Lechón, Y. & de la Rúa, C. & Rodríguez, I. & Caldés, N., 2019. "Socioeconomic implications of biofuels deployment through an Input-Output approach. A case study in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 178-191.
    16. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    17. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    18. Pascal Seppecher & Isabelle Salle & Dany Lang, 2019. "Is the market really a good teacher?," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 299-335, March.
    19. Yue Chen & Xiaojian Niu & Yan Zhang, 2019. "Exploring Contrarian Degree in the Trading Behavior of China's Stock Market," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    20. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:506-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.