IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v37y2012i1p709-724.html
   My bibliography  Save this article

Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates

Author

Listed:
  • Sorrell, Steve
  • Speirs, Jamie
  • Bentley, Roger
  • Miller, Richard
  • Thompson, Erica

Abstract

This review paper summarises and evaluates the evidence regarding four issues that are considered to be of critical importance for future global oil supply. These are: a) how regional and global oil resources are distributed between different sizes of field; b) why estimates of the recoverable resources from individual fields tend to grow over time and the current and likely future contribution of this to global reserve additions; c) how rapidly the production from different categories of field is declining and how this may be expected to change in the future; and d) how rapidly the remaining recoverable resources in a field or region can be produced. It is shown that, despite serious data limitations, the level of knowledge of each of these issues has improved considerably over the past decade. While the evidence on reserve growth appears relatively encouraging for future global oil supply, that on decline and depletion rates does not. Projections of future global oil supply that use assumptions inconsistent with this evidence base are likely to be in error.

Suggested Citation

  • Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Miller, Richard & Thompson, Erica, 2012. "Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates," Energy, Elsevier, vol. 37(1), pages 709-724.
  • Handle: RePEc:eee:energy:v:37:y:2012:i:1:p:709-724
    DOI: 10.1016/j.energy.2011.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miller, Richard G., 2011. "Future oil supply: The changing stance of the International Energy Agency," Energy Policy, Elsevier, vol. 39(3), pages 1569-1574, March.
    2. Adelman, M. A., 2003. "Comment on: R.W. Bentley, "Global oil & gas depletion", Energy Policy 30 (2002) 189-205," Energy Policy, Elsevier, vol. 31(4), pages 389-390, March.
    3. Höök, Mikael & Aleklett, Kjell, 2008. "A decline rate study of Norwegian oil production," Energy Policy, Elsevier, vol. 36(11), pages 4262-4271, November.
    4. Kevin F. Forbes and Ernest M. Zampelli, 2009. "Modelling the Growth in Gas Reseves From Known Fields," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 201-213.
    5. Gowdy, John & Juliá, Roxana, 2007. "Technology and petroleum exhaustion: Evidence from two mega-oilfields," Energy, Elsevier, vol. 32(8), pages 1448-1454.
    6. Höök, Mikael & Hirsch, Robert & Aleklett, Kjell, 2009. "Giant oil field decline rates and their influence on world oil production," Energy Policy, Elsevier, vol. 37(6), pages 2262-2272, June.
    7. Gordon M. Kaufman, 1993. "Statistical Issues in the Assessment of Undiscovered Oil and Gas Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 183-216.
    8. A.G. Kemp & A.S. Kasim, 2005. "Are Decline Rates Really Exponential? Evidence From the UK Continental Shelf," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 27-50.
    9. Watkins, G. C., 2002. "Characteristics of North Sea oil reserve appreciation," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(2), pages 335-372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    3. Semenychev, V.K. & Kurkin, E.I. & Semenychev, E.V., 2014. "Modelling and forecasting the trends of life cycle curves in the production of non-renewable resources," Energy, Elsevier, vol. 75(C), pages 244-251.
    4. Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.
    5. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    6. Pastor, Daniel J. & Ewing, Bradley T., 2022. "Exploding DUCs? Identifying periods of mild explosivity in the time series behavior of drilled but uncompleted wells," Energy, Elsevier, vol. 254(PB).
    7. Logar, Ivana & van den Bergh, Jeroen C.J.M., 2013. "The impact of peak oil on tourism in Spain: An input–output analysis of price, demand and economy-wide effects," Energy, Elsevier, vol. 54(C), pages 155-166.
    8. Andrew Balthrop, 2016. "Power laws in oil and natural gas production," Empirical Economics, Springer, vol. 51(4), pages 1521-1539, December.
    9. Stan Becker, 2013. "Has the World Really Survived the Population Bomb? (Commentary on “How the World Survived the Population Bomb: Lessons From 50 Years of Extraordinary Demographic History”)," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2173-2181, December.
    10. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    11. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    12. Ali Mirchi & Saeed Hadian & Kaveh Madani & Omid M. Rouhani & Azadeh M. Rouhani, 2012. "World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security," Energies, MDPI, vol. 5(8), pages 1-26, July.
    13. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    14. Harvey, L.D.D., 2013. "Global climate-oriented transportation scenarios," Energy Policy, Elsevier, vol. 54(C), pages 87-103.
    15. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    16. Rutberg, Philip G. & Kuznetsov, Vadim A. & Serba, Evgeny O. & Popov, Sergey D. & Surov, Alexander V. & Nakonechny, Ghennady V. & Nikonov, Alexey V., 2013. "Novel three-phase steam–air plasma torch for gasification of high-caloric waste," Applied Energy, Elsevier, vol. 108(C), pages 505-514.
    17. Lamorlette, Aymeric, 2022. "A dynamic model for liquid fossil fuel production based on gross product/ERoEI coupling," Energy, Elsevier, vol. 260(C).
    18. McGlade, Christophe & Ekins, Paul, 2014. "Un-burnable oil: An examination of oil resource utilisation in a decarbonised energy system," Energy Policy, Elsevier, vol. 64(C), pages 102-112.
    19. Bo Xu & Lianyong Feng & William X. Wei & Yan Hu & Jianliang Wang, 2014. "A Preliminary Forecast of the Production Status of China’s Daqing Oil field from the Perspective of EROI," Sustainability, MDPI, vol. 6(11), pages 1-21, November.
    20. David Grassian & Daniel Olsen, 2019. "Lifecycle Energy Accounting of Three Small Offshore Oil Fields," Energies, MDPI, vol. 12(14), pages 1-23, July.
    21. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fantazzini, Dean & Höök, Mikael & Angelantoni, André, 2011. "Global oil risks in the early 21st century," Energy Policy, Elsevier, vol. 39(12), pages 7865-7873.
    2. Charles F. Mason and Gavin Roberts, 2018. "Price Elasticity of Supply and Productivity: An Analysis of Natural Gas Wells in Wyoming," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    3. Sena, Marcelo Fonseca Monteiro de & Rosa, Luiz Pinguelli & Szklo, Alexandre, 2013. "Will Venezuelan extra-heavy oil be a significant source of petroleum in the next decades?," Energy Policy, Elsevier, vol. 61(C), pages 51-59.
    4. Glynn, James & Chiodi, Alessandro & Gargiulo, Maurizio & Deane, J.P. & Bazilian, Morgan & Gallachóir, Brian Ó, 2014. "Energy Security Analysis: The case of constrained oil supply for Ireland," Energy Policy, Elsevier, vol. 66(C), pages 312-325.
    5. Sällh, David & Höök, Mikael & Grandell, Leena & Davidsson, Simon, 2014. "Evaluation and update of Norwegian and Danish oil production forecasts and implications for Swedish oil import," Energy, Elsevier, vol. 65(C), pages 333-345.
    6. Höök, Mikael & Hirsch, Robert & Aleklett, Kjell, 2009. "Giant oil field decline rates and their influence on world oil production," Energy Policy, Elsevier, vol. 37(6), pages 2262-2272, June.
    7. Aleklett, Kjell & Höök, Mikael & Jakobsson, Kristofer & Lardelli, Michael & Snowden, Simon & Söderbergh, Bengt, 2010. "The Peak of the Oil Age - Analyzing the world oil production Reference Scenario in World Energy Outlook 2008," Energy Policy, Elsevier, vol. 38(3), pages 1398-1414, March.
    8. Andrew Balthrop, 2016. "Power laws in oil and natural gas production," Empirical Economics, Springer, vol. 51(4), pages 1521-1539, December.
    9. Warrilow, David, 2015. "A bumpy road to the top: Statistically defining a peak in oil production," Energy Policy, Elsevier, vol. 82(C), pages 81-84.
    10. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    11. Okullo, Samuel J. & Reynès, Frédéric, 2011. "Can reserve additions in mature crude oil provinces attenuate peak oil?," Energy, Elsevier, vol. 36(9), pages 5755-5764.
    12. Welkenhuysen, Kris & Rupert, Jort & Compernolle, Tine & Ramirez, Andrea & Swennen, Rudy & Piessens, Kris, 2017. "Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea," Applied Energy, Elsevier, vol. 185(P1), pages 745-761.
    13. Barros, Carlos Pestana & Gil-Alana, Luis A. & Payne, James E., 2011. "An analysis of oil production by OPEC countries: Persistence, breaks, and outliers," Energy Policy, Elsevier, vol. 39(1), pages 442-453, January.
    14. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Brandt, Adam & Miller, Richard, 2010. "Global oil depletion: A review of the evidence," Energy Policy, Elsevier, vol. 38(9), pages 5290-5295, September.
    15. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    16. Tang, Xu & Zhang, Baosheng & Höök, Mikael & Feng, Lianyong, 2010. "Forecast of oil reserves and production in Daqing oilfield of China," Energy, Elsevier, vol. 35(7), pages 3097-3102.
    17. Rezny, Lukas & White, James Buchanan & Maresova, Petra, 2019. "The knowledge economy: Key to sustainable development?," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 291-300.
    18. Alquist, Ron & Guénette, Justin-Damien, 2014. "A blessing in disguise: The implications of high global oil prices for the North American market," Energy Policy, Elsevier, vol. 64(C), pages 49-57.
    19. Krumdieck, Susan & Page, Shannon & Dantas, André, 2010. "Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 306-322, June.
    20. Cairns, Robert D. & Calfucura, Enrique, 2012. "OPEC: Market failure or power failure?," Energy Policy, Elsevier, vol. 50(C), pages 570-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:37:y:2012:i:1:p:709-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.