IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2788-2795.html
   My bibliography  Save this article

Experimental investigation of a vapor compression heat pump used for cooling and heating applications

Author

Listed:
  • Fatouh, M.
  • Elgendy, E.

Abstract

The present work aims at evaluating the performance characteristics of a vapor compression heat pump (VCHP) for simultaneous space cooling (summer air conditioning) and hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of evaporator water inlet temperature (14:26°C) and condenser water inlet temperature (22:34°C). R134a was used as a primary working fluid whereas water was adopted as a secondary heat transfer fluid at both heat source (evaporator) and heat sink (condenser) of the heat pump. Performance characteristics of the considered heat pump were characterized by outlet water temperatures, water side capacities and coefficient of performance (COP) for various operating modes namely: cooling, heating and simultaneous cooling and heating. Results showed that COP increases with the evaporator water inlet temperature while decreases as the condenser water inlet temperature increases. However, the evaporator water inlet temperature has more effect on the performance characteristics of the heat pump than that of condenser water inlet temperature. Actual COP of cooling mode between 1.9 to 3.1 and that of heating mode from 2.9 to 3.3 were obtained. Actual simultaneous COP between 3.7 and 4.9 was achieved.

Suggested Citation

  • Fatouh, M. & Elgendy, E., 2011. "Experimental investigation of a vapor compression heat pump used for cooling and heating applications," Energy, Elsevier, vol. 36(5), pages 2788-2795.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2788-2795
    DOI: 10.1016/j.energy.2011.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211000971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garimella, Srinivas, 2003. "Innovations in energy efficient and environmentally friendly space-conditioning systems," Energy, Elsevier, vol. 28(15), pages 1593-1614.
    2. Elgendy, E. & Schmidt, J., 2010. "Experimental study of gas engine driven air to water heat pump in cooling mode," Energy, Elsevier, vol. 35(6), pages 2461-2467.
    3. Sun, Z.G., 2008. "Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller," Energy, Elsevier, vol. 33(3), pages 431-436.
    4. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2010. "Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications," Energy, Elsevier, vol. 35(12), pages 4941-4948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verda, Vittorio & Guelpa, Elisa & Kona, Albana & Lo Russo, Stefano, 2012. "Reduction of primary energy needs in urban areas trough optimal planning of district heating and heat pump installations," Energy, Elsevier, vol. 48(1), pages 40-46.
    2. Jia, Teng & Dai, Yanjun, 2018. "Development of a novel unbalanced ammonia-water absorption-resorption heat pump cycle for space heating," Energy, Elsevier, vol. 161(C), pages 251-265.
    3. Ding, Fan & Han, Xinyue, 2023. "Performance enhancement of a nanofluid filtered solar membrane distillation system using heat pump for electricity/water cogeneration," Renewable Energy, Elsevier, vol. 210(C), pages 79-94.
    4. Jia, Jie & Lee, W.L., 2015. "Experimental study of the application of intermittently operated SEHRAC (storage-enhanced heat recovery room air-conditioner) in residential buildings in Hong Kong," Energy, Elsevier, vol. 83(C), pages 628-637.
    5. Paul Byrne, 2022. "Research Summary and Literature Review on Modelling and Simulation of Heat Pumps for Simultaneous Heating and Cooling for Buildings," Energies, MDPI, vol. 15(10), pages 1-43, May.
    6. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    7. Jia, Jie & Lee, W.L., 2015. "Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner," Energy, Elsevier, vol. 93(P2), pages 1394-1403.
    8. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Gao, Peng & Shao, Liang-Liang & Zhang, Chun-Lu, 2019. "Pressure boost thermochemical sorption heat pump cycle," Energy, Elsevier, vol. 169(C), pages 1090-1100.
    10. Wu, Qiang & Tu, Kun & Sun, Haizhou & Chen, Chaofan, 2019. "Investigation on the sustainability and efficiency of single-well circulation (SWC) groundwater heat pump systems," Renewable Energy, Elsevier, vol. 130(C), pages 656-666.
    11. Settino, Jessica & Sant, Tonio & Micallef, Christopher & Farrugia, Mario & Spiteri Staines, Cyril & Licari, John & Micallef, Alexander, 2018. "Overview of solar technologies for electricity, heating and cooling production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 892-909.
    12. Cynthia Boysen & Cord Kaldemeyer & Simon Hilpert & Ilja Tuschy, 2019. "Integration of Flow Temperatures in Unit Commitment Models of Future District Heating Systems," Energies, MDPI, vol. 12(6), pages 1-19, March.
    13. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    14. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Performance of a gas engine driven heat pump for hot water supply systems," Energy, Elsevier, vol. 36(5), pages 2883-2889.
    2. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    3. Amiri Rad, Ehsan & Maddah, Saeed & Mohammadi, Saeed, 2020. "Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses," Renewable Energy, Elsevier, vol. 151(C), pages 342-354.
    4. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2010. "Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications," Energy, Elsevier, vol. 35(12), pages 4941-4948.
    5. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    6. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Modelling and validation of a gas engine heat pump working with R410A for cooling applications," Applied Energy, Elsevier, vol. 88(12), pages 4980-4988.
    7. Elgendy, E. & Schmidt, J., 2010. "Experimental study of gas engine driven air to water heat pump in cooling mode," Energy, Elsevier, vol. 35(6), pages 2461-2467.
    8. Jonathan Ibarra-Bahena & Rosenberg J. Romero, 2014. "Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review," Energies, MDPI, vol. 7(2), pages 1-16, February.
    9. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    10. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    11. Rattner, Alexander S. & Garimella, Srinivas, 2011. "Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA," Energy, Elsevier, vol. 36(10), pages 6172-6183.
    12. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Sanaye, Sepehr & Chahartaghi, Mahmood, 2010. "Thermal modeling and operating tests for the gas engine-driven heat pump systems," Energy, Elsevier, vol. 35(1), pages 351-363.
    15. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    16. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    17. Pulat, Erhan & Coskun, Salih & Unlu, Kursat & Yamankaradeniz, Nurettin, 2009. "Experimental study of horizontal ground source heat pump performance for mild climate in Turkey," Energy, Elsevier, vol. 34(9), pages 1284-1295.
    18. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    19. Ozgener, Leyla & Ozgener, Onder, 2010. "Energetic performance test of an underground air tunnel system for greenhouse heating," Energy, Elsevier, vol. 35(10), pages 4079-4085.
    20. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.

    More about this item

    Keywords

    R134a; Heat pump; Performance; Cooling; Heating; Simultaneous;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2788-2795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.