IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics036054422401096x.html
   My bibliography  Save this article

Marginal abatement cost of CO2: A convex quantile non-radial directional distance function regression method considering noise and inefficiency

Author

Listed:
  • Hu, Shuo
  • Wang, Ailun
  • Lin, Boqiang

Abstract

By purchasing emission reduction equipment or reducing production scale, it is possible to effectively decrease CO2. Therefore, understanding the marginal abatement cost (MAC) associated with these methods is crucial for making decisions. However, previous studies using the directional distance function (DDF) approach often mis-specified production functions and neglected data noise. They also assumed decision-making units (DMUs) to be on the production frontier and used proportional changes in inputs and outputs as abatement paths. This paper addresses these limitations by developing the convex quantile non-radial directional distance function (CQR-NDDF) method, which estimates the MAC of CO2 and determines optimal abatement paths for DMUs without assuming a specific production function, employing linear programming techniques. Applying this method to 30 provinces in mainland China from 2011 to 2019, the study finds that China's CO2 MAC increased from 182 to 247 yuan/ton. The lowest-cost abatement path varies by province and time. The club convergence and ordered probit model are employed to conclude that the second industry and urbanization increase the MAC of CO2, while factors such as foreign direct investment, openness level, and human capital decrease the MAC. Moreover, the CQR-NDDF method yields significantly lower MAC estimates than the NDDF method. In conclusion, this paper provides new insights into China's CO2 MAC, emphasizing the importance of considering inefficiency and data noise in MAC estimation. We anticipate that utilizing CO2 MAC as a benchmark for carbon trading market prices could lead to an increase in prices within China's carbon trading market.

Suggested Citation

  • Hu, Shuo & Wang, Ailun & Lin, Boqiang, 2024. "Marginal abatement cost of CO2: A convex quantile non-radial directional distance function regression method considering noise and inefficiency," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s036054422401096x
    DOI: 10.1016/j.energy.2024.131323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401096X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s036054422401096x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.