IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010910.html
   My bibliography  Save this article

Comparison of algorithms for heat load prediction of buildings

Author

Listed:
  • Wang, Yongjie
  • Zhan, Changhong
  • Li, Guanghao
  • Ren, Shaochen

Abstract

Achieving precision in the prediction of buildings' dynamic heat load is crucial for the advancement of smart heating systems. This research highlights the urgent need to enhance the accuracy of models predicting dynamic heat load. Through literature review, distinguished machine learning and regression algorithms were chosen to formulate prediction models. These models employ a data time-step adaptive strategy, a physics-guided loss function, and fundamental principles of heat transfer. Optimization algorithms of a mathematical nature were utilized to fine-tune the parameters and the framework of long short-term memory (LSTM) and multi-layer perceptron (MLP) models. An analytical comparison was undertaken between physics-guided models and those not guided by physics. Principal conclusions are: 1) Pelican optimization algorithm (POA)-LSTM model emerges as superior in heat load prediction accuracy of an office building, with percentage errors for actual and simulated datasets ranging from −6.7 % to 5.8 % and −5.2 %–4.5 %, respectively, and the mean absolute percentage error (MAPE) standing at 2.3 % and 1.3 %. 2) The linear regression model exhibits the lowest precision, with a MAPE of 17.5 % and 4.0 % for the 7-day prediction results in the actual and simulated datasets, respectively. These findings provide support for improving heat load prediction in heating systems.

Suggested Citation

  • Wang, Yongjie & Zhan, Changhong & Li, Guanghao & Ren, Shaochen, 2024. "Comparison of algorithms for heat load prediction of buildings," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010910
    DOI: 10.1016/j.energy.2024.131318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.