IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010909.html
   My bibliography  Save this article

Hybrid forecasting model of building cooling load based on combined neural network

Author

Listed:
  • Gao, Zhikun
  • Yang, Siyuan
  • Yu, Junqi
  • Zhao, Anjun

Abstract

The inefficient operation of air-conditioning system, which leads to its high-energy consumption, has aroused far-ranging concern at present. And an accurate prediction of building cooling load can be conducive to matching the supply and demand of the air-conditioning system, thus improving its operational efficiency. Therefore, a hybrid forecasting model (BAS-GRNN&LSTM) combing generalized regression neural network (BAS-GRNN) and long short-term memory neural network (BAS-LSTM) optimized by beetle antennae search algorithm is proposed for building cooling load prediction. First, the factors affecting the cooling load are comprehensively analyzed, and the random forest combined with recursive feature elimination (RF-RFE) method is used for feature selection. Then, the BAS-GRNN&LSTM model is developed to forecast. Finally, a simulation experiment is carried out using the measured data of a large building in north of China. Compared with GRNN, LSTM, BAS-GRNN and BAS-LSTM, BAS-GRNN&LSTM performs better in five performance evaluation metrics, RMSE, MAPE, RRE, MBE and R2, demonstrating its higher prediction accuracy. Furthermore, the detailed algorithm performance analysis shows that the proposed hybrid model has significant advantages in robustness, generalization capability and computational complexity, and can be well applied to building cooling load prediction and beneficial to the optimal control of building air-conditioning system.

Suggested Citation

  • Gao, Zhikun & Yang, Siyuan & Yu, Junqi & Zhao, Anjun, 2024. "Hybrid forecasting model of building cooling load based on combined neural network," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010909
    DOI: 10.1016/j.energy.2024.131317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.