IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010843.html
   My bibliography  Save this article

Performance comparison of a direct heat pump using R1234yf and indirect heat pumps using R1234yf and R290 designed for cabin heating of electric vehicles

Author

Listed:
  • Kwon, Soonbum
  • Lee, Dongchan
  • Chung, Jun Yeob
  • Maeng, Heegyu
  • Kim, Yongchan

Abstract

When using R290 as an alternative to R1234yf for heat pump (HP) cabin heating systems, indirect system (IDS) should be employed to address safety issues owing to its high flammability. However, studies comparing the performance of a direct system (DS) using R1234yf and an IDS using R290 are limited. In this study, the performance characteristics of DS-HPR1234yf, IDS-HPR1234yf, and IDS-HPR290 were compared to verify the feasibility of applying R290 to cabin heating systems in electric vehicles. Compared with DS-HPR1234yf, the heating capacity (QHP) and compressor work (WHP) of IDS-HPR1234yf decreased by 2.8% and increased by 4.5% on average, respectively, owing to the system configuration effects. QHP and WHP of IDS-HPR290 increased by 42.1% and 51.0%, respectively, over those of DS-HPR1234yf owing to the refrigerant and system configuration effects. Thus, at −20 °C, COPHP (HP's coefficient of performance) of IDS-HPR290 was 1.8, which was 4.9% higher than that of DS-HPR1234yf, owing to the high decrease rate of WHP. Additionally, considering the use of HP and positive temperature coefficient (PTC) heaters, COPHP + PTC of IDS-HPR290 was 6.7–22.1% higher than that of DS-HPR1234yf owing to its superior QHP, and the driving range (DR) of IDS-HPR290 was 7.2–20% higher than that of DRPTC.

Suggested Citation

  • Kwon, Soonbum & Lee, Dongchan & Chung, Jun Yeob & Maeng, Heegyu & Kim, Yongchan, 2024. "Performance comparison of a direct heat pump using R1234yf and indirect heat pumps using R1234yf and R290 designed for cabin heating of electric vehicles," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010843
    DOI: 10.1016/j.energy.2024.131311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.