IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010752.html
   My bibliography  Save this article

Techno-economic evaluation of transesterification processes for biodiesel production from low quality non-edible feedstocks: Process design and simulation

Author

Listed:
  • Kivevele, Thomas
  • Kichonge, Baraka

Abstract

The global demand for fossil fuels has led to increased pollutant emissions and depleted fossil fuel resources. Biodiesel, a fossil fuel alternative, is widely produced via transesterification. This study assesses the techno-economic performances of three transesterification processes (alkaline, acid, and CaO catalytic) for biodiesel production from low-quality non-edible feedstocks. The study explores effects of elevated free fatty acids (FFAs) and oil/ethanol flow rates on these processes, focusing on their impact on yield, purity, economics and energy aspects. Aspen Plus® V10 software was used for simulations. Despite meeting international biodiesel standards, significant technical and economic variations exist among the processes. The acid catalytic process exhibits energy requirements surpassing those of alkaline and CaO catalytic processes by over 29.58%, leading to operational costs exceeding those of CaO catalysis by 13.11%. The study establishes CaO catalysis as the most feasible option due to its simplicity, adaptability, and substantial energy and cost reductions. By introducing a closed-loop blending setup configuration, the study reveals that CaO catalysis outperforms alkaline and acid catalysis, achieving 11.59% cost reduction and 13.31% energy decrease in closed-loop configurations. The overall results highlight the potential of non-edible feedstocks in biodiesel production for a more environmentally friendly and sustainable energy future.

Suggested Citation

  • Kivevele, Thomas & Kichonge, Baraka, 2024. "Techno-economic evaluation of transesterification processes for biodiesel production from low quality non-edible feedstocks: Process design and simulation," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010752
    DOI: 10.1016/j.energy.2024.131302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.