IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010661.html
   My bibliography  Save this article

Efficiency NiCu/t-zirconia catalysts for methanol steam reforming: Experimental and DFT insights

Author

Listed:
  • Tang, Xincheng
  • Fang, Zhenchang
  • Wu, Yanxiao
  • Yuan, Zhuoer
  • Deng, Bicai
  • Du, Zhongxuan
  • Sun, Chunhua
  • Zhou, Feng
  • Qiao, Xinqi
  • Li, Xinling

Abstract

The development of copper-based catalysts with superior stability, activity, and reduced CO selectivity has been a prominent subject of research in the domain of hydrogen production via methanol steam reforming. In this paper, the bimetallic Ni–Cu catalysts supported by t-ZrO2 were synthesized, with varying concentrations of copper phase being considered. The prepared catalysts were characterized by XRD, XPS, BET, ICP, FESEM, TEM, H2-TPR, EPR and N2O titration, and the results showed that appropriate copper phase concentration and nickel doping obviously decreased the crystal size and promoted the development of pore structure. With the condition of W/M = 3 and LHSV = 5.6 h−1, the catalytic activity revealed the methanol conversion and H2 yield of CNZs were evaluated. The CNZ-4 exhibited optimal performance and stability in the MSR process, with a methanol conversion rate of 100 % and H2 yield of 311 mmol g−1 h−1 at a temperature of 533 K. Given the results that in-situ DRIFTS tests showed, the generation of methyl formate as an intermediate was evaluated. Moreover, further DFT insights pointed out that the ternary surface model showed the best surface adsorption and reaction performance, which provided evidence for the high activity of CNZ catalyst at the molecular level.

Suggested Citation

  • Tang, Xincheng & Fang, Zhenchang & Wu, Yanxiao & Yuan, Zhuoer & Deng, Bicai & Du, Zhongxuan & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Efficiency NiCu/t-zirconia catalysts for methanol steam reforming: Experimental and DFT insights," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010661
    DOI: 10.1016/j.energy.2024.131293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.