IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010181.html
   My bibliography  Save this article

A study of the interaction between volatile and char on the mechanism of NO and N2O conversion during nitrogen-containing biomass model (amino acids) combustion

Author

Listed:
  • Ma, Rui
  • Zhang, Hai
  • Fan, Weidong

Abstract

The interaction between volatile and char is widespread in combustion. The effect of this interaction on the conversion of fuel-N to NOx is significant, but the mechanism remains to be comprehensively unveiled. Thus, in this paper, the NO and N2O conversion of nitrogen-containing biomass models (glutamate, glycine, phenylalanine) during combustion at high temperatures (800–1500 °C) is investigated using two combustion modes, separated combustion (in which volatile and char are burned separately) and coupled combustion (in which volatile and char are burned simultaneously), in an O2/Ar atmosphere. A new pathway for N2O formation resulting from the interaction between volatile and char is identified. At low temperatures, this interaction facilitates the conversion of fuel-N to N2O. For instance, during the separated combustion of glutamate at 800 °C, the conversion rates of fuel-N to N2O and NO are 26.3 % and 20.4 %, respectively. However, in coupled combustion, these conversion rates shift to 48.1 % for N2O and 3.6 % for NO. At high temperatures, this interaction promotes the conversion of fuel-N to NO. For instance, during the separated combustion and coupled combustion of glutamate at 1500 °C, the conversion rates of fuel-N to NO are 6.2 % and 16.6 %, respectively. Similar patterns are observed for the other two amino acids. In both combustion modes, the co-firing of cellulose, lignin, and hemicellulose with glutamic acid significantly suppresses the production of N2O. The conversion rate of N2O decreases by about 7 %–10 %, while the impact on NO release shows either a suppressive or promotive effect in different temperature intervals. These results play a crucial role in the development of efficient and clean combustion technology for biomass.

Suggested Citation

  • Ma, Rui & Zhang, Hai & Fan, Weidong, 2024. "A study of the interaction between volatile and char on the mechanism of NO and N2O conversion during nitrogen-containing biomass model (amino acids) combustion," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010181
    DOI: 10.1016/j.energy.2024.131245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.