IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009745.html
   My bibliography  Save this article

Inner-particle reaction mechanism of cellulose, hemicellulose and lignin during photo-thermal pyrolysis process: Evolution characteristics of free radicals

Author

Listed:
  • Song, Gongxiang
  • Huang, Dexin
  • Ren, Qiangqiang
  • Hu, Song
  • Xu, Jun
  • Xu, Kai
  • Jiang, Long
  • Wang, Yi
  • Su, Sheng
  • Xiang, Jun

Abstract

Based on the concentrated photo-thermal thermogravimetry analyzer (PT-TGA) reactor, the pyrolysis of the cellulose, hemicellulose and lignin with different ratios at 100 °C/min and 550–850 °C was performed. The interaction among the three components significantly reduced the reaction temperatures and increased the maximum weight loss rate. The cellulose/lignin interactions were the main reason for the increase of gas production, especially for the H2 production which reached 128.13 mL/g biomass, much higher than the calculated value of 75.35 mL/g biomass without considering the interactions. What occurred during the co-pyrolysis of cellulose/lignin was the combination of free radicals without consuming the hydrogen radicals, while the formation of chemicals in others’ interactions integrated with the hydrogen radicals inhibited the production of H2 at high temperatures. For full-component pyrolysis, the yield of C-containing gas can be calculated by adding a coefficient of interaction between two components, indicating that the effect of the three-component interaction was much lower than that of the two-component. This study established the interaction mechanism for the three components of biomass during photo-thermal pyrolysis based on free radicals.

Suggested Citation

  • Song, Gongxiang & Huang, Dexin & Ren, Qiangqiang & Hu, Song & Xu, Jun & Xu, Kai & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2024. "Inner-particle reaction mechanism of cellulose, hemicellulose and lignin during photo-thermal pyrolysis process: Evolution characteristics of free radicals," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009745
    DOI: 10.1016/j.energy.2024.131201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.