IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics036054422400968x.html
   My bibliography  Save this article

Experimental study on the immersion liquid cooling performance of high-power data center servers

Author

Listed:
  • Huang, Yongping
  • Liu, Bin
  • Xu, Shijie
  • Bao, Chujin
  • Zhong, Yangfan
  • Zhang, Chengbin

Abstract

Highly dense and integrated data centers face key challenges of realizing efficient cooling and improved energy efficiency. To overcome these challenges, this study experimentally investigated the flow and heat transfer characteristics of single-phase immersion liquid cooling (SPILC) systems. The influence of two opposite coolant flow directions on the SPILC performance was examined. Furthermore, a correlation mechanism between coolant thermal properties and SPILC performance was established, along with a control chart for regulating the working conditions of SPILC systems. The results indicate that compared to a pro-gravity flow, an anti-gravity flow scheme reduces the chip case temperature and thermal resistance by 33.8% and 55.6%, respectively, while decreasing the power usage effectiveness (PUE) by 1.4%. Using coolant with the lowest viscosity reduces the chip case temperature and thermal resistance by 9.3% and 10.5%, respectively, while decreasing the PUE by 0.4%. Moreover, the cooling water temperature has a greater impact on the performance of SPILC systems than the volume flow rate of coolants. Additionally, this paper provides control charts for the cooling water temperature and coolant flow rate to improve the PUE while ensuring the safe operation of SPILC systems, with the highest chip temperature and total electricity consumption as indicators.

Suggested Citation

  • Huang, Yongping & Liu, Bin & Xu, Shijie & Bao, Chujin & Zhong, Yangfan & Zhang, Chengbin, 2024. "Experimental study on the immersion liquid cooling performance of high-power data center servers," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s036054422400968x
    DOI: 10.1016/j.energy.2024.131195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400968X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s036054422400968x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.