IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009320.html
   My bibliography  Save this article

Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach

Author

Listed:
  • Sulaiman, Mohd Herwan
  • Mustaffa, Zuriani

Abstract

Chiller systems hold a critical role in upholding comfort and energy efficiency within commercial buildings. Precise prediction of chiller energy consumption is imperative for operational optimization and the reduction of energy expenditures. This paper introduces an innovative methodology that integrates deep learning (DL), specifically Fixed Forward Neural Networks (FFNN), with Teaching-Learning-Based Optimization (TLBO) to enhance the accuracy of chiller energy consumption forecasts. Drawing on a diverse dataset from a commercial building, encompassing vital input parameters such as Chilled Water Rate, Building Load, Cooling Water Temperature, Humidity, and Dew Point, the study conducts a comprehensive comparison of metaheuristic algorithms (Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Barnacles Mating Optimizer (BMO), Harmony Search Algorithm (HSA), Differential Evolution (DE), Ant Colony Optimization (ACO), and the latest RIME algorithm). TLBO's adept navigation of the intricate parameter space of DL yields highly precise predictions for chiller energy consumption. The study's outcomes underscore TLBO's potential, along with other metaheuristics, in optimizing DL and refining energy management practices in commercial buildings. This research significantly contributes to the evolving discourse on the symbiosis between DL, particularly FFNNs, and metaheuristic optimization, offering a robust framework for chiller energy consumption prediction, thereby advancing sustainability and cost-effectiveness in building operations.

Suggested Citation

  • Sulaiman, Mohd Herwan & Mustaffa, Zuriani, 2024. "Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009320
    DOI: 10.1016/j.energy.2024.131159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.