IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009277.html
   My bibliography  Save this article

Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression

Author

Listed:
  • Zhang, Ran
  • Ji, ChunHui
  • Zhou, Xing
  • Liu, Tianyu
  • Jin, Guang
  • Pan, Zhengqiang
  • Liu, Yajie

Abstract

Reliable capacity estimation is crucial for safe operation of lithium-ion batteries (LIBs). This work combines the temporal convolutional network (TCN) and Gaussian process regression (GPR) to establish a novel probabilistic capacity estimation method. The proposed TCN-GPR method can not only provide accurate capacity estimation but also quantify the uncertainty of the estimation. Besides, the TCN-GPR method can automatically extract degradation features from partial charging segments, overcoming the limitations of manual experience. In addition, the TCN-GPR method can be applied to different types of LIBs through transfer learning using only a small amount of training data. For validation, the Oxford battery dataset is used to demonstrate the accuracy and robustness of the TCN-GPR method, where a mean absolute percentage error (MAPE) of less than 0.3% can be achieved with only a 15-min partial charging segment. Furthermore, our own experimental dataset is used to demonstrate the generalization ability of the TCN-GPR method through transfer learning, where a MAPE of less than 0.7% can be achieved by using only one battery cell as the training sample.

Suggested Citation

  • Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009277
    DOI: 10.1016/j.energy.2024.131154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.