IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009265.html
   My bibliography  Save this article

Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight

Author

Listed:
  • Kirmizi, Mehmet
  • Aygun, Hakan
  • Turan, Onder

Abstract

Nowadays, the development of aviation in line with sustainability goals is one of the current challenges. Being a source of environmental impact, aero-engines have been the main research and design object for achieving these aims. In this study, thermodynamic analysis involving exergy and sustainability computations is performed at different flight conditions where Mach varies between 0 and 0.7 and altitude changes between 0 and 7.7 km. Based on this analysis, modeling exergy parameters for each component are carried out with multiple regression approach. The exergy efficiency of turboprop engine at dynamic flight conditions varies between 15% and 25.9% whereas it is measured between 76 and 77% for the combustor and between 93 and 99% for gas turbine. Moreover, exergy destruction of the turboprop engine changes between 2.15 MW and 7.55 MW. Exergetic improvement potential rate (IPR) of the combustor resides between 0.4 MW and 1.21 MW throughout flight conditions whereas it is found at orders of 0.1 MW or less for other components. On the other hand, linear and quadratic modelings are performed for several parameters of turboprop engine components including exergy efficiency, exergy destruction and IPR under dynamic flight conditions. The determination coefficient (R2) of the models changes between 0.69 and 0.98 in linear modeling, whereas R2 in quadratic modeling improves to 0.97 and 0.99 ranges. It is thought that component-based modeling by considering different flight conditions could contribute to determining points where component efficiency is the highest.

Suggested Citation

  • Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009265
    DOI: 10.1016/j.energy.2024.131153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.