IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224008880.html
   My bibliography  Save this article

Identification of typical district configurations: A two-step global sensitivity analysis framework

Author

Listed:
  • Chuat, Arthur
  • Terrier, Cédric
  • Schnidrig, Jonas
  • Maréchal, François

Abstract

The recent geopolitical conflicts in Europe have underscored the vulnerability of the current energy system to the volatility of energy carrier prices. In the prospect of defining robust energy systems ensuring sustainable energy supply in the future, the imperative of leveraging renewable indigenous energy sources becomes evident. However, as such technologies are integrated into the existing system, it is necessary to shift from the current centralized infrastructure to a decentralized production strategy. This paper presents a method to identify a panel of technological solutions at the district level, intended to reduce complexity for the integration of decentralized models into a national-scale model. The framework’s novelty lies in combining a global sensitivity analysis for solution generation with clustering to identify typical configurations. The global sensitivity analysis is performed on a mixed integer linear programming model, which optimally sizes and operates district energy systems. The sensitivity analysis determines the most influential parameters of the model using the Morris method and provides a representative sampling of the solution space by leveraging the Sobol sampling strategy. The latter is then clustered using a density-based algorithm to identify typical solutions. The framework is applied to a suburban and residential Swiss neighborhood. The first outcome of the research is the high sensitivity of the model to energy carrier prices. As a result, Sobol’s sampling space separates itself into two system types: those based on a natural gas boiler and those relying on a combination of electrical heaters and heat pumps. For both types, the electricity demand is either fulfilled by PV panels or electricity imports. The identified configurations showcase that the framework successfully generates a panel of solutions composed of various system configurations and operations being representative of the overall solution space.

Suggested Citation

  • Chuat, Arthur & Terrier, Cédric & Schnidrig, Jonas & Maréchal, François, 2024. "Identification of typical district configurations: A two-step global sensitivity analysis framework," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008880
    DOI: 10.1016/j.energy.2024.131116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.