IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224008867.html
   My bibliography  Save this article

Li-ion battery capacity prediction using improved temporal fusion transformer model

Author

Listed:
  • Gomez, William
  • Wang, Fu-Kwun
  • Chou, Jia-Hong

Abstract

Lithium-ion (Li-ion) batteries have near-zero energy emissions and provide power to various devices, such as automobiles and portable equipment. The strategy predicts the capacity of Li-ion in advance and can also help arrange maintenance tasks. To improve state of health (SOH) and remaining useful life (RUL) prediction accuracy, we propose an improved temporal fusion transformer (ITFT) method based on bidirectional long short-term memory (Bi-LSTM) encoder-decoder layer replacing the long short-term memory for probabilistic online RUL prediction. A novel interpretable hyperparameter tuning method called Bayesian optimization based on tree-structure Parzen estimator (TPE) is coupled with a unique ITFT model to improve RUL prediction accuracy. Furthermore, we consider the effects of keen-onset to establish the starting point of our training. The root mean square error for four batteries using the proposed model for the test data are 0.0018, 0.0019, 0.0013, and 0.0025, respectively, which outperforms the other models, with an improvement accuracy rate above 25%. The proposed model SOH results indicate that our proposed approach outperforms some previously published methods. Our online RUL prediction demonstrates relative errors of 1.18%, 1.54%, 1.06%, 2.70%, 0.67%, 2%, 3.90%, 0%, and 3.08% for nine batteries, respectively. These results for SOH and RUL predictions emphasize the excellent performance of our proposed method.

Suggested Citation

  • Gomez, William & Wang, Fu-Kwun & Chou, Jia-Hong, 2024. "Li-ion battery capacity prediction using improved temporal fusion transformer model," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008867
    DOI: 10.1016/j.energy.2024.131114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.