IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223035004.html
   My bibliography  Save this article

Asymmetric multifractality: Comparative efficiency analysis of global technological and renewable energy prices using MFDFA and A-MFDFA approaches

Author

Listed:
  • Khurshid, Adnan
  • Khan, Khalid
  • Cifuentes-Faura, Javier
  • Chen, Yufeng

Abstract

This paper examines renewable and technological prices' asymmetric multifractality and efficiency in international and Chinese marketplaces. The asymmetric multifractal detrended fluctuation analytics (A-MFDFA), multifractal detrended fluctuation analytics (MFDFA), and fractal dimension techniques are employed for multifractality and herding behavior. In addition, market deficiency measures (MDM) and hurst exponents are used to construct the inefficiency index (MLM- Magnitude of long-memory) during and before Covid-19. The empirical outcomes supported the existence of asymmetric multifractality across all renewable and technological marketplaces. This multifractality has been observed in up-and-down trends. Moreover, during the COVID-19 outbreak, inefficiency in CELS and SPGlobal's green energy prices increased, which is more apparent in the descending trends. Fractal dimension outcomes suggest a herding behavior in these markets during pandemic. The SPTSX green energy pricing statistics demonstrate that its upward multifractality is larger than the downward in both phases, signifying the strong efficiency position in the market. The SPIC-SH green energy pricing displayed considerable asymmetric multifractality, higher levels of efficiency, and even low levels of market uncertainty during COVID-19. The findings imply that all financial market players should prioritize various green energy investments depending on its asymmetric efficiency and predictability. It will help in their decision-making and reduces herding behavior in the market.

Suggested Citation

  • Khurshid, Adnan & Khan, Khalid & Cifuentes-Faura, Javier & Chen, Yufeng, 2024. "Asymmetric multifractality: Comparative efficiency analysis of global technological and renewable energy prices using MFDFA and A-MFDFA approaches," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223035004
    DOI: 10.1016/j.energy.2023.130106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Chi-Wei & Khan, Khalid & Tao, Ran & Nicoleta-Claudia, Moldovan, 2019. "Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia," Energy, Elsevier, vol. 187(C).
    2. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Upside-Downside Multifractality and Efficiency of Green Bonds: The Roles of Global Factors and COVID-19," Finance Research Letters, Elsevier, vol. 43(C).
    3. Mensi, Walid & Sensoy, Ahmet & Vo, Xuan Vinh & Kang, Sang Hoon, 2020. "Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices," Resources Policy, Elsevier, vol. 69(C).
    4. Rizvi, Syed Aun R. & Arshad, Shaista, 2017. "Analysis of the efficiency–integration nexus of Japanese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 296-308.
    5. Yilmazkuday, Hakan, 2022. "Coronavirus disease 2019 and the global economy," Transport Policy, Elsevier, vol. 120(C), pages 40-46.
    6. Chaofeng Tang & Kentaka Aruga, 2021. "Effects of the 2008 Financial Crisis and COVID-19 Pandemic on the Dynamic Relationship between the Chinese and International Fossil Fuel Markets," JRFM, MDPI, vol. 14(5), pages 1-11, May.
    7. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    8. Khuntia, Sashikanta & Pattanayak, J.K., 2020. "Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume," Finance Research Letters, Elsevier, vol. 32(C).
    9. Khan, Khalid & Su, Chi-Wei & Khurshid, Adnan & Umar, Muhammad, 2022. "COVID-19 impact on multifractality of energy prices: Asymmetric multifractality analysis," Energy, Elsevier, vol. 256(C).
    10. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    11. Cajueiro, Daniel O. & Tabak, Benjamin M., 2009. "Multifractality and herding behavior in the Japanese stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 497-504.
    12. Olubusoye, Olusanya E & Yaya, OlaOluwa S. & Ogbonna, Ahamuefula, 2021. "An Information-Based Index of Uncertainty and the predictability of Energy Prices," MPRA Paper 109839, University Library of Munich, Germany.
    13. Khurshid, Adnan & Khan, Khalid & Rauf, Abdur & Cifuentes-Faura, Javier, 2024. "Effect of geopolitical risk on resources prices in the global and Russian-Ukrainian context: A novel Bayesian structural model," Resources Policy, Elsevier, vol. 88(C).
    14. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
    15. Honorata Nyga-Łukaszewska & Kentaka Aruga, 2020. "Energy Prices and COVID-Immunity: The Case of Crude Oil and Natural Gas Prices in the US and Japan," Energies, MDPI, vol. 13(23), pages 1-17, November.
    16. Cheng, Qing & Liu, Xinyuan & Zhu, Xiaowu, 2019. "Cryptocurrency momentum effect: DFA and MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    17. Halbrügge, Stephanie & Schott, Paul & Weibelzahl, Martin & Buhl, Hans Ulrich & Fridgen, Gilbert & Schöpf, Michael, 2021. "How did the German and other European electricity systems react to the COVID-19 pandemic?," Applied Energy, Elsevier, vol. 285(C).
    18. Chowdhury, Mohammad Ashraful Ferdous & Abdullah, Mohammad & Alam, Masud & Abedin, Mohammad Zoynul & Shi, Baofeng, 2023. "NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis," International Review of Financial Analysis, Elsevier, vol. 87(C).
    19. Donia Aloui & Stéphane Goutte & Khaled Guesmi & Rafla Hchaichi, 2020. "COVID 19's impact on crude oil and natural gas S&P GS Indexes," Working Papers halshs-02613280, HAL.
    20. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Analysis of the efficiency and multifractality of gold markets based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 817-827.
    21. Delbianco, Fernando & Tohmé, Fernando & Stosic, Tatijana & Stosic, Borko, 2016. "Multifractal behavior of commodity markets: Fuel versus non-fuel products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 573-580.
    22. Norouzzadeh, P. & Rahmani, B., 2006. "A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 328-336.
    23. Stavroyiannis, Stavros & Babalos, Vassilios & Bekiros, Stelios & Lahmiri, Salim & Uddin, Gazi Salah, 2019. "The high frequency multifractal properties of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 62-71.
    24. Mali, Provash & Mukhopadhyay, Amitabha, 2014. "Multifractal characterization of gold market: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 361-372.
    25. Zied Ftiti & Fredj Jawadi & Wael Louhichi & Mohamed El Arbi Madani, 2021. "Are oil and gas futures markets efficient? A multifractal analysis," Applied Economics, Taylor & Francis Journals, vol. 53(2), pages 164-184, January.
    26. Khan, Khalid & Su, Chi-Wei & Zhu, Meng Nan, 2022. "Examining the behaviour of energy prices to COVID-19 uncertainty: A quantile on quantile approach," Energy, Elsevier, vol. 239(PE).
    27. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    28. Naeem, Muhammad Abubakr & Bouri, Elie & Peng, Zhe & Shahzad, Syed Jawad Hussain & Vo, Xuan Vinh, 2021. "Asymmetric efficiency of cryptocurrencies during COVID19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    29. Zhang, Xin & Yang, Liansheng & Zhu, Yingming, 2019. "Analysis of multifractal characterization of Bitcoin market based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 973-983.
    30. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3218-3229.
    31. Naeem, Muhammad Abubakr & Yousaf, Imran & Karim, Sitara & Tiwari, Aviral Kumar & Farid, Saqib, 2023. "Comparing asymmetric price efficiency in regional ESG markets before and during COVID-19," Economic Modelling, Elsevier, vol. 118(C).
    32. Wang, Jian & Shao, Wei & Kim, Junseok, 2020. "Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    33. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    34. Khan, Khalid & Khurshid, Adnan & Cifuentes-Faura, Javier, 2023. "Energy security analysis in a geopolitically volatile world: A causal study," Resources Policy, Elsevier, vol. 83(C).
    35. Yusri Yusup & Nur Kamila Ramli & John Stephen Kayode & Chee Su Yin & Sabiq Hisham & Hassim Mohamad Isa & Mardiana Idayu Ahmad, 2020. "Atmospheric Carbon Dioxide and Electricity Production Due to Lockdown," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    36. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    37. Rizvi, Syed Aun R. & Dewandaru, Ginanjar & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 86-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Memon, Bilal Ahmed & Yao, Hongxing & Naveed, Hafiz Muhammad, 2022. "Examining the efficiency and herding behavior of commodity markets using multifractal detrended fluctuation analysis. Empirical evidence from energy, agriculture, and metal markets," Resources Policy, Elsevier, vol. 77(C).
    2. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    3. Naeem, Muhammad Abubakr & Farid, Saqib & Ferrer, Román & Shahzad, Syed Jawad Hussain, 2021. "Comparative efficiency of green and conventional bonds pre- and during COVID-19: An asymmetric multifractal detrended fluctuation analysis," Energy Policy, Elsevier, vol. 153(C).
    4. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    6. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    7. Han, Chenyu & Wang, Yiming & Ning, Ye, 2019. "Comparative analysis of the multifractality and efficiency of exchange markets: Evidence from exchange rates dynamics of major world currencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(632), A), pages 61-80, Autumn.
    9. Bhatia, Madhur, 2023. "On the efficiency of the gold returns: An econometric exploration for India, USA and Brazil," Resources Policy, Elsevier, vol. 82(C).
    10. Aslam, Faheem & Memon, Bilal Ahmed & Hunjra, Ahmed Imran & Bouri, Elie, 2023. "The dynamics of market efficiency of major cryptocurrencies," Global Finance Journal, Elsevier, vol. 58(C).
    11. Cristiana Vaz & Rui Pascoal & Helder Sebastião, 2021. "Price Appreciation and Roughness Duality in Bitcoin: A Multifractal Analysis," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    12. Khan, Khalid & Su, Chi-Wei & Khurshid, Adnan & Umar, Muhammad, 2022. "COVID-19 impact on multifractality of energy prices: Asymmetric multifractality analysis," Energy, Elsevier, vol. 256(C).
    13. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    14. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    15. Zhuang, Xiaoyang & Wei, Dan, 2022. "Asymmetric multifractality, comparative efficiency analysis of green finance markets: A dynamic study by index-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Zhang, Shuchang & Guo, Yaoqi & Cheng, Hui & Zhang, Hongwei, 2021. "Cross-correlations between price and volume in China's crude oil futures market: A study based on multifractal approaches," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    17. Faheem Aslam & Paulo Ferreira & Haider Ali & Ana Ercília José, 2022. "Application of Multifractal Analysis in Estimating the Reaction of Energy Markets to Geopolitical Acts and Threats," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    18. Chenyu Han & Yiming Wang & Yingying Xu, 2019. "Efficiency and Multifractality Analysis of the Chinese Stock Market: Evidence from Stock Indices before and after the 2015 Stock Market Crash," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    19. Han, Chenyu & Wang, Yiming & Ning, Ye, 2019. "Analysis and comparison of the multifractality and efficiency of Chinese stock market: Evidence from dynamics of major indexes in different boards," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C), pages 1-1.
    20. Faheem Aslam & Wahbeeah Mohti & Paulo Ferreira, 2020. "Evidence of Intraday Multifractality in European Stock Markets during the Recent Coronavirus (COVID-19) Outbreak," IJFS, MDPI, vol. 8(2), pages 1-13, May.

    More about this item

    Keywords

    Asymmetric multifractality; Herding behavior; COVID-19; Green energy prices; Renewable energy; Inefficiency index;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223035004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.