IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223017449.html
   My bibliography  Save this article

Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend

Author

Listed:
  • Ooi, Jong Boon
  • Kau, Chia Chuin
  • Manoharan, Dilrukshan Naveen
  • Wang, Xin
  • Tran, Manh-Vu
  • Hung, Yew Mun

Abstract

Multi-walled carbon nanotubes (MWCNTs) could be an effective fuel additive for 20 vol% palm-oil biodiesel in fossil diesel (B20) owing to its superior thermal conductivity. The effects of MWCNTs on the combustion, performance, and emission characteristics of B20 are investigated at various concentrations by a single-cylinder diesel engine under different engine speeds. The results show that B20 fuels with MWCNTs addition reduced the ignition-delay (ID), advanced the combustion phasing, and shortened the combustion duration by up to 17.6% (−2.6° CA), 12.9% (−1.8° CA), and 18.5% (−4.3° CA), respectively. The addition of MWCNTs in B20 also improved the brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) by up to 15.7% (−47.4 g/kW·h) and 16.3% (+4.6%), respectively. Compared with B20 fuel without MWCNTs, CO and UHCs emissions reduced by up to 34.7% (−8.2 g/kg-fuel) and 16.0% (−3.8 g/kg-fuel), respectively but NOx emissions increased by up to 43.5% (+7.6 g/kg-fuel). Overall, the results suggest that B20 with MWCNTs addition can enhance the combustion, performance, and emission characteristics of a light-duty diesel engine.

Suggested Citation

  • Ooi, Jong Boon & Kau, Chia Chuin & Manoharan, Dilrukshan Naveen & Wang, Xin & Tran, Manh-Vu & Hung, Yew Mun, 2023. "Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017449
    DOI: 10.1016/j.energy.2023.128350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaliliantabar, Farzad & Ghobadian, Barat & Najafi, Gholamhassan & Mamat, Rizalman & Carlucci, Antonio Paolo, 2019. "Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    2. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Jaikumar, S. & Srinivas, V. & Rajasekhar, M., 2021. "Influence of dispersant added nanoparticle additives with diesel-biodiesel blend on direct injection compression ignition engine: Combustion, engine performance, and exhaust emissions approach," Energy, Elsevier, vol. 224(C).
    4. Halimatussadiah, A. & Nainggolan, D. & Yui, S. & Moeis, F.R. & Siregar, A.A., 2021. "Progressive biodiesel policy in Indonesia: Does the Government's economic proposition hold?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Kukana, Rajendra & Jakhar, Om Prakash, 2022. "Effect of ternary blends diesel/n-propanol/composite biodiesel on diesel engine operating parameters," Energy, Elsevier, vol. 260(C).
    6. Janakiraman, S. & Lakshmanan, T. & Raghu, P., 2021. "Experimental investigative analysis of ternary (diesel + biodiesel + bio-ethanol) fuel blended with metal-doped titanium oxide nanoadditives tested on a diesel engine," Energy, Elsevier, vol. 235(C).
    7. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    8. Farzad Jaliliantabar & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Artificial Neural Network Modeling and Sensitivity Analysis of Performance and Emissions in a Compression Ignition Engine Using Biodiesel Fuel," Energies, MDPI, vol. 11(9), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    2. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    3. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    4. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    5. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    6. Piotr Bera, 2019. "Development of Engine Efficiency Characteristic in Dynamic Working States," Energies, MDPI, vol. 12(15), pages 1-14, July.
    7. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    9. Maarten Vlaswinkel & Frank Willems, 2024. "Data-Based In-Cylinder Pressure Model with Cyclic Variations for Combustion Control: An RCCI Engine Application," Energies, MDPI, vol. 17(8), pages 1-19, April.
    10. Andrés David Morales Rojas & Sebastián Heredia Quintana & Iván Darío Bedoya Caro, 2024. "Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    11. Barbosa, Társis Prado & Eckert, Jony Javorski & Roso, Vinícius Rückert & Pujatti, Fabrício José Pacheco & da Silva, Leonardo Adolpho Rodrigues & Horta Gutiérrez, Juan Carlos, 2021. "Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle," Energy, Elsevier, vol. 235(C).
    12. Meshack Hawi & Ahmed Elwardany & Mohamed Ismail & Mahmoud Ahmed, 2019. "Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles," Energies, MDPI, vol. 12(5), pages 1-18, February.
    13. Zhao, Wenbin & Wu, Haoqing & Mi, Shijie & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2023. "Experimental investigation of the control strategy of high load extension under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    14. Faissal Jelti & Amine Allouhi & Kheira Anissa Tabet Aoul, 2023. "Transition Paths towards a Sustainable Transportation System: A Literature Review," Sustainability, MDPI, vol. 15(21), pages 1-25, October.
    15. Ali, Mumtaz & Tursoy, Turgut & Samour, Ahmed & Moyo, Delani & Konneh, Abrahim, 2022. "Testing the impact of the gold price, oil price, and renewable energy on carbon emissions in South Africa: Novel evidence from bootstrap ARDL and NARDL approaches," Resources Policy, Elsevier, vol. 79(C).
    16. Wang, Huaiyu & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan, 2022. "Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm," Energy, Elsevier, vol. 261(PB).
    17. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Sathiyamoorthi Ramalingam & G Sankaranarayanan & S Senthil & R.A Rohith & R Santosh Kumar, 2023. "Effect of Cerium oxide nanoparticles derived from biosynthesis of Azadirachta indica on stability and performance of a research CI engine powered by Diesel-Lemongrass oil blends," Energy & Environment, , vol. 34(4), pages 886-908, June.
    19. Vladimir Markov & Vyacheslav Kamaltdinov & Anatoliy Zherdev & Viktor Furman & Bowen Sa & Vsevolod Neverov, 2019. "Study on the Possibility of Improving the Environmental Performance of Diesel Engine Using Carbon Nanotubes as a Petroleum Diesel Fuel Additive," Energies, MDPI, vol. 12(22), pages 1-13, November.
    20. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.