IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222028389.html
   My bibliography  Save this article

Thermal-flow calculations for a thermal waste treatment plant and CFD modelling of the spread of gases in the context of urban structures

Author

Listed:
  • Wójtowicz-Wróbel, Agnieszka
  • Kania, Olga
  • Kocewiak, Katarzyna
  • Wójtowicz, Ryszard
  • Dzierwa, Piotr
  • Trojan, Marcin

Abstract

Thermal waste treatment plants are an answer to the important problem of waste neutralization on the one hand, while inspiring various emotions in society due to their impact on their planned or existing sites on the other. The primary benefit from incinerating waste is the ability to reuse it as fuel to produce energy. The objective of the research presented in this paper was to assess the production potential of eco-incinerators and to investigate the potential impact that the operation of a thermal waste treatment plant can have on its surroundings. To this end, the study included analyses in three problem groups: urban planning, balance calculations and the numerical modeling of fouling spread. The area subjected to the analyses was a district of a model city with a plant at the center. The goal of the CFD modeling was to determine the spread of gaseous pollutants (CO, CO2, SO2, NOx) produced as a result of the incineration of municipal waste in the incineration plant, to get their approximate mass fraction values at a distance of 1 km from the smokestack outlet. The spread of gaseous pollutants in CFD modeling was simulated using the k-epsilon RNG model. It is noticeable that the largest mass fraction of the given gases has carbon dioxide, which is also characterized as a 1.5 times heavier gas than the air. The paper also presents thermal calculations that present the performance of the entire thermal waste treatment plant, which depends on the final use of the energy it produces.

Suggested Citation

  • Wójtowicz-Wróbel, Agnieszka & Kania, Olga & Kocewiak, Katarzyna & Wójtowicz, Ryszard & Dzierwa, Piotr & Trojan, Marcin, 2023. "Thermal-flow calculations for a thermal waste treatment plant and CFD modelling of the spread of gases in the context of urban structures," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028389
    DOI: 10.1016/j.energy.2022.125952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).
    2. Shumal, Mohammad & Taghipour Jahromi, Ahmad Reza & Ferdowsi, Ali & Mehdi Noorbakhsh Dehkordi, Seyed Mohammad & Moloudian, Amin & Dehnavi, Ali, 2020. "Comprehensive analysis of municipal solid waste rejected fractions as a source of Refused Derived Fuel in developing countries (case study of Isfahan- Iran): Environmental Impact and sustainable devel," Renewable Energy, Elsevier, vol. 146(C), pages 404-413.
    3. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    4. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    5. Trojan, Marcin, 2019. "Modeling of a steam boiler operation using the boiler nonlinear mathematical model," Energy, Elsevier, vol. 175(C), pages 1194-1208.
    6. DeCicco, Paul R. & Soehngen, Henry F., 1970. "Computer utilization in the analysis and design of municipal incinerators," Socio-Economic Planning Sciences, Elsevier, vol. 4(1), pages 161-186, March.
    7. Trojan, Marcin & Taler, Jan & Smaza, Krzysztof & Wróbel, Wojciech & Dzierwa, Piotr & Taler, Dawid & Kaczmarski, Karol, 2022. "A new software program for monitoring the energy distribution in a thermal waste treatment plant system," Renewable Energy, Elsevier, vol. 184(C), pages 1055-1073.
    8. Hu, Xiaoli & Zhu, Weiwei & Wei, Jiuchang, 2021. "Effects of information strategies on public acceptance of nuclear energy," Energy, Elsevier, vol. 231(C).
    9. Yu, Zhaosheng & Ma, Xiaoqian & Liao, Yanfen, 2010. "Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres," Renewable Energy, Elsevier, vol. 35(5), pages 895-903.
    10. Achillas, Ch. & Vlachokostas, Ch. & Moussiopoulos, N. & Banias, G. & Kafetzopoulos, G. & Karagiannidis, A., 2011. "Social acceptance for the development of a waste-to-energy plant in an urban area," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 857-863.
    11. Guo, Yue & Ru, Peng & Su, Jun & Anadon, Laura Diaz, 2015. "Not in my backyard, but not far away from me: Local acceptance of wind power in China," Energy, Elsevier, vol. 82(C), pages 722-733.
    12. Kânoğlu-Özkan, Dilge Güldehen & Soytaş, Uğur, 2022. "The social acceptance of shale gas development: Evidence from Turkey," Energy, Elsevier, vol. 239(PC).
    13. Alçada-Almeida, Luís & Coutinho-Rodrigues, João & Current, John, 2009. "A multiobjective modeling approach to locating incinerators," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 111-120, June.
    14. Luo, Chao & Ju, Yanbing & Santibanez Gonzalez, Ernesto D.R. & Dong, Peiwu & Wang, Aihua, 2020. "The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trojan, Marcin & Taler, Jan & Smaza, Krzysztof & Wróbel, Wojciech & Dzierwa, Piotr & Taler, Dawid & Kaczmarski, Karol, 2022. "A new software program for monitoring the energy distribution in a thermal waste treatment plant system," Renewable Energy, Elsevier, vol. 184(C), pages 1055-1073.
    2. Caferra, Rocco & D'Adamo, Idiano & Morone, Piergiuseppe, 2023. "Wasting energy or energizing waste? The public acceptance of waste-to-energy technology," Energy, Elsevier, vol. 263(PE).
    3. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    4. Shadbahr, Jalil & Ebadian, Mahmood & Gonzales-Calienes, Giovanna & Kannangara, Miyuru & Ahmadi, Leila & Bensebaa, Farid, 2022. "Impact of waste management and conversion technologies on cost and carbon footprint - Case studies in rural and urban cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Corina Pelau & Alexandra Catalina Chinie, 2018. "Econometric Model for Measuring the Impact of the Education Level of the Population on the Recycling Rate in a Circular Economy," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 20(48), pages 340-340.
    7. Ju-Hee Kim & Young-Kuk Kim & Seung-Hoon Yoo, 2023. "Does Proximity to a Power Plant Affect Housing Property Values of a City in South Korea? An Empirical Investigation," Energies, MDPI, vol. 16(4), pages 1-14, February.
    8. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    9. Qi, Wen-Hui & Qi, Ming-Liang & Ji, Ya-Min, 2020. "The effect path of public communication on public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 144(C).
    10. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    11. Konrad Siegfried & Susann Günther & Sara Mengato & Fabian Riedel & Daniela Thrän, 2023. "Boosting Biowaste Valorisation—Do We Need an Accelerated Regional Implementation of the European Law for End-of-Waste?," Sustainability, MDPI, vol. 15(17), pages 1-13, September.
    12. Wang, Yu & Gu, Jibao & Wu, Jianlin, 2020. "Explaining local residents’ acceptance of rebuilding nuclear power plants: The roles of perceived general benefit and perceived local benefit," Energy Policy, Elsevier, vol. 140(C).
    13. Emmanuel D. Adamides & Konstantinos Georgousoglou & Yannis Mouzakitis, 2023. "Designing a Flexible and Adaptive Municipal Waste Management Organisation Using the Viable System Model," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    14. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Davor Mance & Siniša Vilke & Borna Debelić, 2020. "Sustainable Governance of Coastal Areas and Tourism Impact on Waste Production: Panel Analysis of Croatian Municipalities," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    16. Majdak, Marek & Grądziel, Sławomir, 2020. "Influence of thermal and flow conditions on the thermal stresses distribution in the evaporator tubes," Energy, Elsevier, vol. 209(C).
    17. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    18. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    19. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    20. Shen, Wen Zhong & Zhu, Wei Jun & Barlas, Emre & Li, Ye, 2019. "Advanced flow and noise simulation method for wind farm assessment in complex terrain," Renewable Energy, Elsevier, vol. 143(C), pages 1812-1825.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.