IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics0360544222007393.html
   My bibliography  Save this article

Thermodynamic performance study on gas-steam cogeneration systems with different configurations based on condensed waste heat utilization

Author

Listed:
  • Zhang, Hongsheng
  • Liu, Xingang
  • Hao, Ruijun
  • Liu, Chengjun
  • Liu, Yifeng
  • Duan, Chenghong
  • Qin, Jiyun

Abstract

In view of the limited application of the traditional water-cooled GSPP (gas-steam combined cycle power plant) in water-deficient areas, an air-cooled GSPP is proposed based on AHP (absorption heat pump) to achieve conservation of energy and water in this paper. The thermodynamic performance is comprehensively compared with three other configurations from both the energy and exergy analysis perspectives. Four cogeneration systems are considered: traditional water-cooled GDES (GSPP with direct extraction steam for heating), water-cooled GAS (GSPP with AHP system), air-cooled GDES and air-cooled GAS. Compared with water-cooled GDES, net output power, energy and exergy efficiencies increase by 17,815 kW, 1.43% and 1.53% in air-cooled GAS with 384,382 kW heating capacity. The results demonstrate that the performance of an air-cooled GAS can surpass that of a traditional water-cooled GDES, which shows that the energy-saving effect of waste heat recovery can compensate for the performance reduction caused by air cooling modification. Therefore, the traditional water-cooled GDES can be modified into an air-cooled GAS to implement dual purposes of saving energy and water in water-starved regions. The water-cooled GAS achieves the best performance and should be selected in water-rich areas. This research can provide theoretical support for different energy- and water-saving modification needs.

Suggested Citation

  • Zhang, Hongsheng & Liu, Xingang & Hao, Ruijun & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance study on gas-steam cogeneration systems with different configurations based on condensed waste heat utilization," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007393
    DOI: 10.1016/j.energy.2022.123836
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222007393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Chuang & Yan, Xiao-jiang & Wang, Shun-sen & Bai, Kun-lun & Di, Juan & Cheng, Shang-fang & Li, Jun, 2016. "System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery," Energy, Elsevier, vol. 100(C), pages 391-400.
    2. Li, Xing & Wang, Zhifeng & Yang, Ming & Yuan, Guofeng, 2019. "Modeling and simulation of a novel combined heat and power system with absorption heat pump based on solar thermal power tower plant," Energy, Elsevier, vol. 186(C).
    3. Ravago, Majah-Leah V. & Fabella, Raul V. & Jandoc, Karl Robert L. & Frias, Renzi G. & Magadia, J. Kathleen P., 2021. "Gauging the market potential for natural gas among Philippine manufacturing firms," Energy, Elsevier, vol. 237(C).
    4. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
    5. Sweidan, Osama D., 2021. "Is the geopolitical risk an incentive or obstacle to renewable energy deployment? Evidence from a panel analysis," Renewable Energy, Elsevier, vol. 178(C), pages 377-384.
    6. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    7. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    8. Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
    9. Shan, Xiaofang & Wang, Peng & Lu, Weizhen, 2017. "The reliability and availability evaluation of repairable district heating networks under changeable external conditions," Applied Energy, Elsevier, vol. 203(C), pages 686-695.
    10. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    11. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
    12. Apan-Ortiz, Jorge Igor & Sanchez-Fernández, Eva & González-Díaz, Abigail, 2018. "Use of steam jet booster as an integration strategy to operate a natural gas combined cycle with post-combustion CO2 capture at part-load," Energy, Elsevier, vol. 165(PB), pages 126-139.
    13. He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
    14. Xu, Z.Y. & Gao, J.T. & Hu, Bin & Wang, R.Z., 2022. "Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery," Energy, Elsevier, vol. 238(PB).
    15. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system," Applied Energy, Elsevier, vol. 205(C), pages 163-172.
    16. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hongsheng & Hao, Ruijun & Liu, Xingang & Zhang, Ning & Guo, Wenli & Zhang, Zhenghui & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance analysis of an improved coal-fired power generation system coupled with geothermal energy based on organic Rankine cycle," Renewable Energy, Elsevier, vol. 201(P1), pages 273-290.
    2. Xiao, Guozhen & Yang, Guoan & Zhao, Sixiang & Xia, Lixing & Chu, Fengming & Tan, Zhan'ao, 2022. "Battery performance optimization and multi-component transport enhancement of organic flow battery based on channel section reconstruction," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
    2. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    3. Zhang, Hongsheng & Hao, Ruijun & Liu, Xingang & Zhang, Ning & Guo, Wenli & Zhang, Zhenghui & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance analysis of an improved coal-fired power generation system coupled with geothermal energy based on organic Rankine cycle," Renewable Energy, Elsevier, vol. 201(P1), pages 273-290.
    4. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    5. Li, Zheng-Zheng & Meng, Qin & Zhang, Linling & Lobont, Oana-Ramona & Shen, Yijuan, 2023. "How do rare earth prices respond to economic and geopolitical factors?," Resources Policy, Elsevier, vol. 85(PA).
    6. Xing Zhou & Quan Guo & Ming Zhang, 2021. "Impacts of OFDI on Host Country Energy Consumption and Home Country Energy Efficiency Based on a Belt and Road Perspective," Energies, MDPI, vol. 14(21), pages 1-25, November.
    7. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    8. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    9. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    10. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    11. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    12. Lee, Chi-Chuan & Zhang, Jian & Hou, Shanshuai, 2023. "The impact of regional renewable energy development on environmental sustainability in China," Resources Policy, Elsevier, vol. 80(C).
    13. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    14. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    15. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    16. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    17. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
    18. Wang, Zefeng & Han, Wei & Zhang, Na & Gan, Zhongxue & Sun, Jie & Jin, Hongguang, 2018. "Energy level difference graphic analysis method of combined cooling, heating and power systems," Energy, Elsevier, vol. 160(C), pages 1069-1077.
    19. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    20. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.