IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221015012.html
   My bibliography  Save this article

Analyzing manufacturing sector and selected development challenges: A panel data analysis

Author

Listed:
  • Halkos, George
  • Moll de Alba, Jaime
  • Todorov, Valentin

Abstract

The importance of manufacturing as a main determinant of economic growth has been explored extensively in the literature considering manufacturing as the engine of economic growth. In our study, a new database covering 117 countries for 1995–2017 containing four indicators, namely manufacturing value added share in GDP, growth of GDP, manufacturing energy intensity, and UNIDO's Competitive Industrial Performance score is constructed. Relying on this dataset and the Granger causality tests the paper investigates the effect of economic growth, energy intensity and the competitiveness index on manufacturing value added. Applying adequate econometric methods the effect of this set of variables on the relative importance of manufacturing in the economy as a whole measured by the share of MVA in GDP (MVAsh) is analyzed. An inverted U shape is verified with different turning points between static and dynamic analyses in the full sample, as well as in industrialized countries and emerging and developing countries separately, with turning points all within samples. Energy intensity has negative effect in most of the cases while CIP has positive effect with high magnitudes. The rate of adjustment is high.

Suggested Citation

  • Halkos, George & Moll de Alba, Jaime & Todorov, Valentin, 2021. "Analyzing manufacturing sector and selected development challenges: A panel data analysis," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015012
    DOI: 10.1016/j.energy.2021.121253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campagnolo, Lorenza & Davide, Marinella, 2019. "Can the Paris deal boost SDGs achievement? An assessment of climate mitigation co-benefits or side-effects on poverty and inequality," World Development, Elsevier, vol. 122(C), pages 96-109.
    2. George E. Halkos, 2013. "Exploring the economy -- environment relationship in the case of sulphur emissions," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(2), pages 159-177, March.
    3. Xiaobo Shen & Boqiang Lin & Wei Wu, 2019. "R&D Efforts, Total Factor Productivity, and the Energy Intensity in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(11), pages 2566-2588, September.
    4. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
    5. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    6. Szirmai, Adam & Verspagen, Bart, 2015. "Manufacturing and economic growth in developing countries, 1950–2005," Structural Change and Economic Dynamics, Elsevier, vol. 34(C), pages 46-59.
    7. George HALKOS, 2012. "Environmental Pollution And Economic Development:Explaining The Existence Of An Environmental Kuznets Curve," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 6(6(18)/ Su), pages 148-159.
    8. Sam Fankhauser & Frank Jotzo, 2017. "Economic growth and development with low-carbon energy," CCEP Working Papers 1705, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    9. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    10. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    11. Unido, 2020. "International Yearbook of Industrial Statistics 2020," Books, Edward Elgar Publishing, number 19198.
    12. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    13. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    14. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    15. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    16. Muhammad Haseeb & Sebastian Kot & Hafezali Iqbal Hussain & Leonardus WW Mihardjo & Piotr Saługa, 2020. "Modelling the Non-Linear Energy Intensity Effect Based on a Quantile-on-Quantile Approach: The Case of Textiles Manufacturing in Asian Countries," Energies, MDPI, vol. 13(9), pages 1-19, May.
    17. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    18. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    19. Halkos, George, 2011. "Economy - environment relationship: The case of sulphur emissions," MPRA Paper 45480, University Library of Munich, Germany.
    20. Szirmai, Adam, 2012. "Industrialisation as an engine of growth in developing countries, 1950–2005," Structural Change and Economic Dynamics, Elsevier, vol. 23(4), pages 406-420.
    21. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    22. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    23. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    24. Marconi, Nelson & Reis, Cristina Fróes de Borja & Araújo, Eliane Cristina de, 2016. "Manufacturing and economic development: The actuality of Kaldor's first and second laws," Structural Change and Economic Dynamics, Elsevier, vol. 37(C), pages 75-89.
    25. Yilmaz Bayar & Marius Dan Gavriletea, 2019. "Energy efficiency, renewable energy, economic growth: evidence from emerging market economies," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 2221-2234, July.
    26. Kris Boudt & Valentin Todorov & Wenjing Wang, 2020. "Robust Distribution-Based Winsorization in Composite Indicators Construction," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(2), pages 375-397, June.
    27. Peter Pedroni, 2000. "Fully Modified OLS for Heterogeneous Cointegrated Panels," Department of Economics Working Papers 2000-03, Department of Economics, Williams College.
    28. Maria Caterina Bramati & Christophe Croux, 2007. "Robust estimators for the fixed effects panel data model," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 521-540, November.
    29. A. P. Thirlwall, 2002. "The Nature of Economic Growth," Books, Edward Elgar Publishing, number 2579.
    30. Samuel Fankhauser & Nicholas Stern, 2016. "Climate change, development, poverty and economics," GRI Working Papers 253, Grantham Research Institute on Climate Change and the Environment.
    31. Pedroni, Peter, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    32. Liu Zhenmin & Patricia Espinosa, 2019. "Tackling climate change to accelerate sustainable development," Nature Climate Change, Nature, vol. 9(7), pages 494-496, July.
    33. Carlos Aller, Maria Jesus Herrerias, and Javier Ordóñez, 2018. "The Effect of Financial Development on Energy Intensity in China," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    34. Frees, Edward W., 1995. "Assessing cross-sectional correlation in panel data," Journal of Econometrics, Elsevier, vol. 69(2), pages 393-414, October.
    35. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    36. Verdoorn, P J, 1980. "Verdoorn's Law in Retrospect: A Comment," Economic Journal, Royal Economic Society, vol. 90(358), pages 382-385, June.
    37. Haraguchi, Nobuya & Cheng, Charles Fang Chin & Smeets, Eveline, 2017. "The Importance of Manufacturing in Economic Development: Has This Changed?," World Development, Elsevier, vol. 93(C), pages 293-315.
    38. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    39. Halkos, George & Gkampoura, Eleni-Christina, 2021. "Where do we stand on the 17 Sustainable Development Goals? An overview on progress," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 94-122.
    40. Silberston, Aubrey, 1972. "Economies of Scale in Theory and Practice," Economic Journal, Royal Economic Society, vol. 82(325), pages 369-391, Supplemen.
    41. John Cornwall, 1977. "The Relevance Of Dual Models For Analyzing Developed Capitalist Economies," Kyklos, Wiley Blackwell, vol. 30(1), pages 51-73, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonidas C. Leonidou & Bilge Aykol & Saeed Samiee & Nikolaos Korfiatis, 2022. "A Meta-analysis of the Antecedents and Outcomes of Consumer Foreign Country Image Perceptions: The Moderating Role of Macro-level Country Differences," Management International Review, Springer, vol. 62(5), pages 741-784, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Halkos & Stylianos Nomikos & Antonis Skouloudis, 2021. "Revisiting ISO 14001 diffusion among national terrains: panel data evidence from OECD countries and the BRIICS," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 781-803, October.
    2. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    3. Acikgoz, Senay & Ben Ali, Mohamed Sami, 2019. "Where does economic growth in the Middle Eastern and North African countries come from?," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 172-183.
    4. Renato Santiago & Matheus Koengkan & José Alberto Fuinhas & António Cardoso Marques, 2020. "The relationship between public capital stock, private capital stock and economic growth in the Latin American and Caribbean countries," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 67(3), pages 293-317, September.
    5. Markus Eberhardt & Francis Teal, 2008. "Modeling Technology and Technological Change in Manufacturing: How do Countries Differ?," CSAE Working Paper Series 2008-12, Centre for the Study of African Economies, University of Oxford.
    6. Sung, Bongsuk, 2015. "Public policy supports and export performance of bioenergy technologies: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 477-495.
    7. Sung, Bongsuk & Song, Woo-Yong, 2014. "How government policies affect the export dynamics of renewable energy technologies: A subsectoral analysis," Energy, Elsevier, vol. 69(C), pages 843-859.
    8. Naima Chrid & Sami Saafi & Mohamed Chakroun, 2021. "Export Upgrading and Economic Growth: a Panel Cointegration and Causality Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(2), pages 811-841, June.
    9. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).
    10. George E. Halkos & Apostolos S. Tsirivis, 2023. "Electricity Prices in the European Union Region: The Role of Renewable Energy Sources, Key Economic Factors and Market Liberalization," Energies, MDPI, vol. 16(6), pages 1-20, March.
    11. R. Golinelli & I. Mammi & A. Musolesi, 2018. "Parameter heterogeneity, persistence and cross-sectional dependence: new insights on fiscal policy reaction functions for the Euro area," Working Papers wp1120, Dipartimento Scienze Economiche, Universita' di Bologna.
    12. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
    13. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    14. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    15. Wilman-Santiago Ochoa-Moreno & Byron Alejandro Quito & Carlos Andrés Moreno-Hurtado, 2021. "Foreign Direct Investment and Environmental Quality: Revisiting the EKC in Latin American Countries," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    16. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    17. Charles Shaaba Saba & Nicholas Ngepah, 2022. "ICT Diffusion, Industrialisation and Economic Growth Nexus: an International Cross-country Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(3), pages 2030-2069, September.
    18. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    19. Sung, Bongsuk & Song, Woo-Yong & Park, Sang-Do, 2018. "How foreign direct investment affects CO2 emission levels in the Chinese manufacturing industry: Evidence from panel data," Economic Systems, Elsevier, vol. 42(2), pages 320-331.
    20. Rishan Adha & Cheng-Yih Hong & Somya Agrawal & Li-Hua Li, 2023. "ICT, carbon emissions, climate change, and energy demand nexus: The potential benefit of digitalization in Taiwan," Energy & Environment, , vol. 34(5), pages 1619-1638, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.