IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221004783.html
   My bibliography  Save this article

Demand-side management for off-grid solar-powered microgrids: A case study of rural electrification in Tanzania

Author

Listed:
  • Wang, Xinlin
  • Wang, Hao
  • Ahn, Sung-Hoon

Abstract

This work proposes a novel and sustainable energy development strategy for addressing the energy shortages in rural areas and the low energy efficiency of off-grid solar power systems. This study combines the analysis of power consumption type with consumption anomaly detection to characterize households’ power consumption habits and ensure the safety of a system. Specifically, the proposed anomaly detection method is a hybrid nonintrusive model. The home power usage data are collected and processed by auto-data-binning without manual labeling, and thus, the training cost is reduced to enable the application of machine learning technologies in underdeveloped areas with limited computational resources. With the premise of limited energy sources in off-grid areas, the proposed power consumption analysis method divides home power usage habits into four different types. Different feedback mechanisms are adopted to extend the microgrid’s supply time according to the analysis results. The proposed method significantly increases the utilization of local renewable energy and improves residents’ experience. The proposed method is implemented in a rural village in Tanzania; after long-term monitoring, the validity of the proposed method is demonstrated.

Suggested Citation

  • Wang, Xinlin & Wang, Hao & Ahn, Sung-Hoon, 2021. "Demand-side management for off-grid solar-powered microgrids: A case study of rural electrification in Tanzania," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004783
    DOI: 10.1016/j.energy.2021.120229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221004783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy, Anthony & Auger, François & Dupriez-Robin, Florian & Bourguet, Salvy & Tran, Quoc Tuan, 2020. "A multi-level Demand-Side Management algorithm for offgrid multi-source systems," Energy, Elsevier, vol. 191(C).
    2. Centolella, Paul, 2010. "The integration of Price Responsive Demand into Regional Transmission Organization (RTO) wholesale power markets and system operations," Energy, Elsevier, vol. 35(4), pages 1568-1574.
    3. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    4. Campillo, Javier & Dahlquist, Erik & Wallin, Fredrik & Vassileva, Iana, 2016. "Is real-time electricity pricing suitable for residential users without demand-side management?," Energy, Elsevier, vol. 109(C), pages 310-325.
    5. Laura Auria & Rouslan A. Moro, 2008. "Support Vector Machines (SVM) as a Technique for Solvency Analysis," Discussion Papers of DIW Berlin 811, DIW Berlin, German Institute for Economic Research.
    6. Pelzer, R. & Mathews, E.H. & le Roux, D.F. & Kleingeld, M., 2008. "A new approach to ensure successful implementation of sustainable demand side management (DSM) in South African mines," Energy, Elsevier, vol. 33(8), pages 1254-1263.
    7. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    8. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    9. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    10. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    11. Moussa P. Blimpo & Malcolm Cosgrove-Davies, 2019. "Electricity Access in Sub-Saharan Africa [Accès à l’électricité en Afrique subsaharienne]," World Bank Publications - Books, The World Bank Group, number 31333, December.
    12. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    13. Wang, Xinlin & Ahn, Sung-Hoon, 2020. "Real-time prediction and anomaly detection of electrical load in a residential community," Applied Energy, Elsevier, vol. 259(C).
    14. Herter, Karen, 2007. "Residential implementation of critical-peak pricing of electricity," Energy Policy, Elsevier, vol. 35(4), pages 2121-2130, April.
    15. Fankhauser, Samuel & Tepic, Sladjana, 2007. "Can poor consumers pay for energy and water? An affordability analysis for transition countries," Energy Policy, Elsevier, vol. 35(2), pages 1038-1049, February.
    16. da Silva, Patrícia Pereira & Cerqueira, Pedro André & Ogbe, Wojolomi, 2018. "Determinants of renewable energy growth in Sub-Saharan Africa: Evidence from panel ARDL," Energy, Elsevier, vol. 156(C), pages 45-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    2. Wang, Xinlin & Flores, Robert & Brouwer, Jack & Papaefthymiou, Marios, 2022. "Real-time detection of electrical load anomalies through hyperdimensional computing," Energy, Elsevier, vol. 261(PA).
    3. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    4. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    5. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Armando J. Taveras Cruz & Miguel Aybar-Mejía & Yobany Díaz Roque & Karla Coste Ramírez & José Gabriel Durán & Dinelson Rosario Weeks & Deyslen Mariano-Hernández & Luis Hernández-Callejo, 2023. "Implications of 5G Technology in the Management of Power Microgrids: A Review of the Literature," Energies, MDPI, vol. 16(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    2. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    3. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    4. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    5. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    7. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).
    8. Osiolo, Helen Hoka, 2021. "Impact of cost, returns and investments: Towards renewable energy generation in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 180(C), pages 756-772.
    9. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    10. Sana Iqbal & Mohammad Sarfraz & Mohammad Ayyub & Mohd Tariq & Ripon K. Chakrabortty & Michael J. Ryan & Basem Alamri, 2021. "A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment," Sustainability, MDPI, vol. 13(13), pages 1, June.
    11. Adlband, Nahid & Biguesh, Mehrzad & Mohammadi, Mohammad, 2020. "A privacy-preserving and aggregate load controlling decentralized energy consumption scheduling scheme," Energy, Elsevier, vol. 198(C).
    12. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    13. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    14. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    15. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    16. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    17. Ihsan, Abbas & Jeppesen, Matthew & Brear, Michael J., 2019. "Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant," Applied Energy, Elsevier, vol. 238(C), pages 972-984.
    18. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    19. Mauro Lafratta & Matthew Leach & Rex B. Thorpe & Mark Willcocks & Eve Germain & Sabeha K. Ouki & Achame Shana & Jacquetta Lee, 2021. "Economic and Carbon Costs of Electricity Balancing Services: The Need for Secure Flexible Low-Carbon Generation," Energies, MDPI, vol. 14(16), pages 1-21, August.
    20. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.