IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p5449-5456.html
   My bibliography  Save this article

Energy transition, carbon dioxide reduction and output growth in the Swedish pulp and paper industry: 1973-2006

Author

Listed:
  • Lindmark, Magnus
  • Bergquist, Ann-Kristin
  • Andersson, Lars Fredrik

Abstract

This study examines the historical relation between carbon dioxide emission and output growth in the Swedish pulp and paper industry from 1973 to 2006. We find that the industry achieved an 80 percent reduction in carbon dioxide emission, where most of the reduction took place before the implementation of active climate policy in 1991. Foremost energy substitution and also efficiency improvements contributed to the reduction. Growing prices of fossil fuel due to market price change and taxes and subsidies, explains most of the efficiency improvements and substitution. The study finds that energy transformation was coinciding with ongoing structural change in the industry during the 1970s and 1980s as well as a strong period of environmental adaption. We therefore suggest that the oil reduction was reinforced through the dynamics between the energy issue and an overall renewing process of the industry. This suggests a need to coordinate climate and environmental policy measures with the long-term industrial dynamics of structural change.

Suggested Citation

  • Lindmark, Magnus & Bergquist, Ann-Kristin & Andersson, Lars Fredrik, 2011. "Energy transition, carbon dioxide reduction and output growth in the Swedish pulp and paper industry: 1973-2006," Energy Policy, Elsevier, vol. 39(9), pages 5449-5456, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5449-5456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511003909
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fagerberg, Jan, 2000. "Technological progress, structural change and productivity growth: a comparative study," Structural Change and Economic Dynamics, Elsevier, vol. 11(4), pages 393-411, December.
    2. Peneder, Michael, 2003. "Industrial structure and aggregate growth," Structural Change and Economic Dynamics, Elsevier, vol. 14(4), pages 427-448, December.
    3. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    4. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    5. Liaskas, K. & Mavrotas, G. & Mandaraka, M. & Diakoulaki, D., 2000. "Decomposition of industrial CO2 emissions:: The case of European Union," Energy Economics, Elsevier, vol. 22(4), pages 383-394, August.
    6. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    7. Kumar, Surender & Managi, Shunsuke, 2009. "Energy price-induced and exogenous technological change: Assessing the economic and environmental outcomes," Resource and Energy Economics, Elsevier, vol. 31(4), pages 334-353, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    2. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
    3. Lawrence, Akvile & Karlsson, Magnus & Thollander, Patrik, 2018. "Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry," Energy, Elsevier, vol. 153(C), pages 825-835.
    4. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    5. Wang, Yutao & Yang, Xuechun & Sun, Mingxing & Ma, Lei & Li, Xiao & Shi, Lei, 2016. "Estimating carbon emissions from the pulp and paper industry: A case study," Applied Energy, Elsevier, vol. 184(C), pages 779-789.
    6. Parlow, Anton & von Hauff, Michael, 2014. "CO2-Emissions and Economic Growth - A bounds-testing cointegration analysis for German industries," MPRA Paper 55716, University Library of Munich, Germany.
    7. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
    8. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Honma, Satoshi & Ushifusa, Yoshiaki & Okamura, Soyoka & Vandercamme, Lilu, 2023. "Measuring carbon emissions performance of Japan's metal industry: Energy inputs, agglomeration, and the potential for green recovery reduction," Resources Policy, Elsevier, vol. 82(C).
    10. Muhammad Shahbaz & Naceur Khraief & Mantu Kumar Mahalik, 2020. "Investigating the environmental Kuznets’s curve for Sweden: evidence from multivariate adaptive regression splines (MARS)," Empirical Economics, Springer, vol. 59(4), pages 1883-1902, October.
    11. Bergquist, Ann-Kristin & Keskitalo, E. Carina H., 2016. "Regulation versus deregulation. Policy divergence between Swedish forestry and the Swedish pulp and paper industry after the 1990s," Forest Policy and Economics, Elsevier, vol. 73(C), pages 10-17.
    12. Lin MA & Jiayu HU, 2018. "An Analysis of the Eco-Innovation Mechanism and Policies in the Pulp and Paper Industry Based on Coupled Game Theory and System Dynamics," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    13. Malgorzata Klaudia Guzowska & Barbara Kryk, 2021. "Efficiency of Implementing Climate/Energy Targets of the Europe 2020 Strategy and the Structural Diversity between Old and New Member States," Energies, MDPI, vol. 14(24), pages 1-18, December.
    14. Irfan, Muhammad & Abdur Rehman, Mubeen & Liu, Xuemei & Razzaq, Asif, 2022. "Interlinkages between mineral resources, financial markets, and sustainable energy sources: Evidence from minerals exporting countries," Resources Policy, Elsevier, vol. 79(C).
    15. Lin, Boqiang & Moubarak, Mohamed & Ouyang, Xiaoling, 2014. "Carbon dioxide emissions and growth of the manufacturing sector: Evidence for China," Energy, Elsevier, vol. 76(C), pages 830-837.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
    2. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    3. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    4. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    5. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    6. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    7. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. repec:dau:papers:123456789/7769 is not listed on IDEAS
    9. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Jin, Wei, 2012. "Can technological innovation help China take on its climate responsibility? An intertemporal general equilibrium analysis," Energy Policy, Elsevier, vol. 49(C), pages 629-641.
    12. Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
    13. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    14. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    15. de la Croix, David & Gosseries, Axel, 2012. "The natalist bias of pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 271-287.
    16. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    17. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    18. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    19. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    20. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    21. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).

    More about this item

    Keywords

    CO2 reduction Pulp and paper industry Technical change;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5449-5456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.