IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v128y2023ics0140988323006254.html
   My bibliography  Save this article

Biofuel policies and their ripple effects: An analysis of vegetable oil price dynamics and global consumer responses

Author

Listed:
  • Declerck, Francis
  • Hikouatcha, Prince
  • Tchoffo, Guillaume
  • Tédongap, Roméo

Abstract

The paper analyzes the price dynamics of Palm, Soybean, Rapeseed, and Sunflower oils due to their extensive uses in the food and fuel sectors and recent considerable price increases. We consider the impact of biofuel policies and consumers’ responses. Using Johansen cointegration and VECM, we identify two long-term equilibrium relationships that arise from biofuel policies as our first key finding. In our second insight, an asymmetric AR-EGARCH-DCC model results show heightened volatility and correlation responses to vegetable oil price deviations, especially post-biofuel. Biofuel policies significantly influence shifts in time-varying correlations among these price shocks. Finally, we examine how household consumers in nine countries respond to price shocks with a structural VAR model. The post-biofuel policy era markedly influenced consumer reactions regarding vegetable oil price fluctuations. While most nations show decreased sentiment with price hikes, China and Germany see increased consumer sentiment. South Africa’s response varies by oil type. Biofuel policies amplify these effects on consumer confidence across all studied countries. These findings have significant implications for policymakers trying to balance the energy transition and global food security while promoting sustainable growth in vegetable oil demand across both sectors and ensuring price stability for global agricultural commodities.

Suggested Citation

  • Declerck, Francis & Hikouatcha, Prince & Tchoffo, Guillaume & Tédongap, Roméo, 2023. "Biofuel policies and their ripple effects: An analysis of vegetable oil price dynamics and global consumer responses," Energy Economics, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006254
    DOI: 10.1016/j.eneco.2023.107127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323006254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serletis, Apostolos & Xu, Libo, 2019. "The ethanol mandate and crude oil and biofuel agricultural commodity price dynamics," Journal of Commodity Markets, Elsevier, vol. 15(C), pages 1-1.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. Saghaian, Sayed H., 2010. "The Impact of the Oil Sector on Commodity Prices: Correlation or Causation?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(3), pages 477-485, August.
    4. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    5. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    6. Kumar, Pawan & Singh, Vipul Kumar & Rao, Sandeep, 2023. "Does the substitution effect lead to feedback effect linkage between ethanol, crude oil, and soft agricultural commodities?," Energy Economics, Elsevier, vol. 119(C).
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    8. Wixson, Sarah E. & Katchova, Ani L., 2012. "Price Asymmetric Relationships in Commodity and Energy Markets," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122553, European Association of Agricultural Economists.
    9. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    10. Boly, Mohamed & Sanou, Aicha, 2022. "Biofuels and food security: evidence from Indonesia and Mexico," Energy Policy, Elsevier, vol. 163(C).
    11. Chiu, Fan-Ping & Hsu, Chia-Sheng & Ho, Alan & Chen, Chi-Chung, 2016. "Modeling the price relationships between crude oil, energy crops and biofuels," Energy, Elsevier, vol. 109(C), pages 845-857.
    12. Anthony Paris, 2018. "On the link between oil and agricultural commodity prices: Do biofuels matter?," International Economics, CEPII research center, issue 155, pages 48-60.
    13. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    14. A. D. Owen & K. Chowdhury & J. R. R. Garrido, 1996. "A market share model for vegetable and tropical oils," Applied Economics Letters, Taylor & Francis Journals, vol. 3(2), pages 95-99.
    15. Duku, Moses Hensley & Gu, Sai & Hagan, Essel Ben, 2011. "A comprehensive review of biomass resources and biofuels potential in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 404-415, January.
    16. Ciaian, Pavel & Kancs, d'Artis, 2011. "Food, energy and environment: Is bioenergy the missing link?," Food Policy, Elsevier, vol. 36(5), pages 571-580, October.
    17. Berhanu, Mesfin & Jabasingh, S. Anuradha & Kifile, Zebene, 2017. "Expanding sustenance in Ethiopia based on renewable energy resources – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1035-1045.
    18. Busse, S. & Brümmer, B. & Ihle, R., 2011. "Investigating rapeseed price volatilities in the course of the food crisis," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    19. Ciaian, Pavel & Kancs, d'Artis, 2011. "Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 326-348, January.
    20. Yu, Tun-Hsiang (Edward) & Bessler, David A. & Fuller, Stephen W., 2006. "Cointegration and Causality Analysis of World Vegetable Oil and Crude Oil Prices," 2006 Annual meeting, July 23-26, Long Beach, CA 21439, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    21. Bernhard Brümmer & Olaf Korn & Kristina Schlüßler & Tinoush Jamali Jaghdani, 2016. "Volatility in Oilseeds and Vegetable Oils Markets: Drivers and Spillovers," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 685-705, September.
    22. Ohimain, Elijah I., 2013. "Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?," Energy Policy, Elsevier, vol. 54(C), pages 352-359.
    23. Subramaniam, Yogeeswari & Masron, Tajul Ariffin & Azman, Nik Hadiyan Nik, 2019. "The impact of biofuels on food security," International Economics, Elsevier, vol. 160(C), pages 72-83.
    24. Wang, Sun Ling & McPhail, Lihong, 2014. "Impacts of energy shocks on US agricultural productivity growth and commodity prices—A structural VAR analysis," Energy Economics, Elsevier, vol. 46(C), pages 435-444.
    25. Mallory, Mindy L. & Irwin, Scott H. & Hayes, Dermot J., 2012. "How Market Efficiency and the Theory of Storage Link Corn and Ethanol Markets Energy Economics," ISU General Staff Papers 201211010700001537, Iowa State University, Department of Economics.
    26. Natanelov, Valeri & Alam, Mohammad J. & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2011. "Is there co-movement of agricultural commodities futures prices and crude oil?," Energy Policy, Elsevier, vol. 39(9), pages 4971-4984, September.
    27. Meenakshi Malhotra & Dinesh Kumar Sharma, 2016. "Volatility Dynamics in Oil and Oilseeds Spot and Futures Market in India," Vikalpa: The Journal for Decision Makers, , vol. 41(2), pages 132-148, June.
    28. Peri, Massimo & Baldi, Lucia, 2010. "Vegetable oil market and biofuel policy: An asymmetric cointegration approach," Energy Economics, Elsevier, vol. 32(3), pages 687-693, May.
    29. Qiu, Cheng & Colson, Gregory & Escalante, Cesar & Wetzstein, Michael, 2012. "Considering macroeconomic indicators in the food before fuel nexus," Energy Economics, Elsevier, vol. 34(6), pages 2021-2028.
    30. Cheng, Natalie Fang Ling & Hasanov, Akram Shavkatovich & Poon, Wai Ching & Bouri, Elie, 2023. "The US-China trade war and the volatility linkages between energy and agricultural commodities," Energy Economics, Elsevier, vol. 120(C).
    31. Teresa Serra & David Zilberman & José M. Gil & Barry K. Goodwin, 2011. "Nonlinearities in the U.S. corn‐ethanol‐oil‐gasoline price system," Agricultural Economics, International Association of Agricultural Economists, vol. 42(1), pages 35-45, January.
    32. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    33. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    34. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    35. Esposti, Roberto, 2021. "On the long-term common movement of resource and commodity prices.A methodological proposal," Resources Policy, Elsevier, vol. 72(C).
    36. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    37. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    38. Rini Yayuk Priyati & Rod Tyers, 2016. "Price Relationships in Vegetable Oil and Energy Markets," Economics Discussion / Working Papers 16-11, The University of Western Australia, Department of Economics.
    39. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    40. Sima Siami-Namini, 2019. "Volatility Transmission Among Oil Price, Exchange Rate and Agricultural Commodities Prices," Applied Economics and Finance, Redfame publishing, vol. 6(4), pages 41-61, July.
    41. Cheung, Yin-Wong & Lai, Kon S, 1993. "Finite-Sample Sizes of Johansen's Likelihood Ration Tests for Conintegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 55(3), pages 313-328, August.
    42. Araujo Enciso, Sergio René & Fellmann, Thomas & Pérez Dominguez, Ignacio & Santini, Fabien, 2016. "Abolishing biofuel policies: Possible impacts on agricultural price levels, price variability and global food security," Food Policy, Elsevier, vol. 61(C), pages 9-26.
    43. Naeem, Muhammad Abubakr & Karim, Sitara & Hasan, Mudassar & Lucey, Brian M. & Kang, Sang Hoon, 2022. "Nexus between oil shocks and agriculture commodities: Evidence from time and frequency domain," Energy Economics, Elsevier, vol. 112(C).
    44. Yang, Yao & Karali, Berna, 2022. "How far is too far for volatility transmission?," Journal of Commodity Markets, Elsevier, vol. 26(C).
    45. Lajdová, Zuzana & Kapusta, Jaroslav & Bielik, Peter, 2017. "Assessing Interdependencies Between Food and Energy Prices: The Case of Biodiesel in Germany," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 9(3), September.
    46. McPhail, Lihong Lu, 2011. "Assessing the impact of US ethanol on fossil fuel markets: A structural VAR approach," Energy Economics, Elsevier, vol. 33(6), pages 1177-1185.
    47. Campiche, Jody L. & Bryant, Henry L. & Richardson, James W. & Outlaw, Joe L., 2007. "Examining the Evolving Correspondence Between Petroleum Prices and Agricultural Commodity Prices," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 9881, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    48. Ebadian, Mahmood & van Dyk, Susan & McMillan, James D. & Saddler, Jack, 2020. "Biofuels policies that have encouraged their production and use: An international perspective," Energy Policy, Elsevier, vol. 147(C).
    49. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    50. Johansen, Soren, 1995. "Identifying restrictions of linear equations with applications to simultaneous equations and cointegration," Journal of Econometrics, Elsevier, vol. 69(1), pages 111-132, September.
    51. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    52. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    53. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    3. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    4. Sergio Adriani David & Claudio M. C. Inácio & José A. Tenreiro Machado, 2019. "Ethanol Prices and Agricultural Commodities: An Investigation of Their Relationship," Mathematics, MDPI, vol. 7(9), pages 1-25, August.
    5. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    6. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    7. Guo, Jin & Tanaka, Tetsuji, 2022. "Energy security versus food security: An analysis of fuel ethanol- related markets using the spillover index and partial wavelet coherence approaches," Energy Economics, Elsevier, vol. 112(C).
    8. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
    9. Papież, Monika, 2014. "A dynamic analysis of causality between prices of corn, crude oil and ethanol," MPRA Paper 56540, University Library of Munich, Germany.
    10. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    11. Guellil, Mohammed Seghir & Benbouziane, Mohamed, 2018. "Volatility Linkages between Agricultural Commodity Prices, Oil Prices and Real USD Exchange Rate || Vínculos de volatilidad entre precios de productos agrícolas, precios del petróleo y tipo de cambio ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 71-83, Diciembre.
    12. Cheng, Natalie Fang Ling & Hasanov, Akram Shavkatovich & Poon, Wai Ching & Bouri, Elie, 2023. "The US-China trade war and the volatility linkages between energy and agricultural commodities," Energy Economics, Elsevier, vol. 120(C).
    13. Tan Ngoc Vu & Duc Hong Vo & Chi Minh Ho & Loan Thi-Hong Van, 2019. "Modeling the Impact of Agricultural Shocks on Oil Price in the US: A New Approach," JRFM, MDPI, vol. 12(3), pages 1-27, September.
    14. Tanaka, Tetsuji & Guo, Jin & Wang, Xiufang, 2023. "Did biofuel production strengthen the comovements between food and fuel prices? Evidence from ethanol-related markets in the United States," Renewable Energy, Elsevier, vol. 217(C).
    15. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    16. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
    17. Duc Hong Vo & Tan Ngoc Vu & Anh The Vo & Michael McAleer, 2019. "Modeling the Relationship between Crude Oil and Agricultural Commodity Prices," Energies, MDPI, vol. 12(7), pages 1-41, April.
    18. Fernandez-Perez, Adrian & Frijns, Bart & Tourani-Rad, Alireza, 2016. "Contemporaneous interactions among fuel, biofuel and agricultural commodities," Energy Economics, Elsevier, vol. 58(C), pages 1-10.
    19. Zingbagba, Mark & Nunes, Rubens & Fadairo, Muriel, 2020. "The impact of diesel price on upstream and downstream food prices: Evidence from São Paulo," Energy Economics, Elsevier, vol. 85(C).
    20. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).

    More about this item

    Keywords

    Biofuel policy; Long run; Consumer confidence; Transition; EGARCH-DCC; VECM;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.