IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v104y2021ics014098832100476x.html
   My bibliography  Save this article

Merchant transmission in single-price electricity markets with cost-based redispatch

Author

Listed:
  • Staudt, Philipp
  • Oren, Shmuel S.

Abstract

Transmission expansion is a complex problem in energy market design and research has not yet provided a market-based solution that is superior to a (partly) regulated approach. Furthermore, markets with a single market clearing price lack regional incentives for system friendly generation or transmission capacity expansion. In this paper, we propose a market design for transmission expansion that can be implemented in single-price markets with cost-based redispatch and we describe its properties. We show that our market solution is incentive compatible, satisfies the ’beneficiary pays’ requirement and leads to a welfare optimal grid expansion otherwise achieved by an integrated optimization approach of a benevolent grid operator. We apply the mechanism to the German electricity system in 2018, 2019 and 2030 as an example and show that transmission capacity expansion is greatly reduced using the mechanism instead of a no-congestion regulation. We also test the robustness of the approach to erroneous generation capacity expectations and find that the impact on economic results is limited. Finally, we extend our approach to include congestion reducing generation capacity investment and discuss the strategic effects on a 6-node reference grid.

Suggested Citation

  • Staudt, Philipp & Oren, Shmuel S., 2021. "Merchant transmission in single-price electricity markets with cost-based redispatch," Energy Economics, Elsevier, vol. 104(C).
  • Handle: RePEc:eee:eneeco:v:104:y:2021:i:c:s014098832100476x
    DOI: 10.1016/j.eneco.2021.105610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832100476X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Hogan & Juan Rosellón & Ingo Vogelsang, 2010. "Toward a combined merchant-regulatory mechanism for electricity transmission expansion," Journal of Regulatory Economics, Springer, vol. 38(2), pages 113-143, October.
    2. Kemfert, Claudia & Kunz, Friedrich & Rosellón, Juan, 2016. "A welfare analysis of electricity transmission planning in Germany," Energy Policy, Elsevier, vol. 94(C), pages 446-452.
    3. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    4. Stern, J. & Turvey, R., 2003. "Auctions of capacity in network industries," Utilities Policy, Elsevier, vol. 11(1), pages 1-8, March.
    5. Barmack, Matthew & Griffes, Peter & Kahn, Edward & Oren, Shmuel, 2003. "Performance Incentives for Transmission," The Electricity Journal, Elsevier, vol. 16(3), pages 9-22, April.
    6. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "Efficient pricing for European electricity networks - The theory of nodal pricing applied to feeding-in wind in Germany," Utilities Policy, Elsevier, vol. 16(4), pages 284-291, December.
    7. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    8. Meletiou, Alexis & Cambini, Carlo & Masera, Marcelo, 2018. "Regulatory and ownership determinants of unbundling regime choice for European electricity transmission utilities," Utilities Policy, Elsevier, vol. 50(C), pages 13-25.
    9. Sauma, Enzo E. & Oren, Shmuel S., 2009. "Do generation firms in restructured electricity markets have incentives to support social-welfare-improving transmission investments?," Energy Economics, Elsevier, vol. 31(5), pages 676-689, September.
    10. Staudt, Philipp & Schmidt, Marc & Gärttner, Johannes & Weinhardt, Christof, 2018. "A decentralized approach towards resolving transmission grid congestion in Germany using vehicle-to-grid technology," Applied Energy, Elsevier, vol. 230(C), pages 1435-1446.
    11. Chao, Hung-Po & Peck, Stephen C, 1998. "Reliability Management in Competitive Electricity Markets," Journal of Regulatory Economics, Springer, vol. 14(2), pages 189-200, September.
    12. Kuosmanen, Timo & Nguyen, Tuan, 2020. "Capital bias in the Nordic revenue cap regulation: Averch-Johnson critique revisited," Energy Policy, Elsevier, vol. 139(C).
    13. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    14. Tarjei Kristiansen & Juan Rosellón, 2006. "A Merchant Mechanism for Electricity Transmission Expansion," Journal of Regulatory Economics, Springer, vol. 29(2), pages 167-193, March.
    15. Matschoss, Patrick & Bayer, Benjamin & Thomas, Heiko & Marian, Adela, 2019. "The German incentive regulation and its practical impact on the grid integration of renewable energy systems," Renewable Energy, Elsevier, vol. 134(C), pages 727-738.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sirin, Selahattin Murat & Camadan, Ercument & Erten, Ibrahim Etem & Zhang, Alex Hongliang, 2023. "Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices," Energy Policy, Elsevier, vol. 180(C).
    2. Davi-Arderius, D. & Jamasb, T. & Rosellon, J., 2024. "Renewable Integration: The Role of Market Conditions," Cambridge Working Papers in Economics 2421, Faculty of Economics, University of Cambridge.
    3. Henni, Sarah & Schäffer, Michael & Fischer, Peter & Weinhardt, Christof & Staudt, Philipp, 2023. "Bottom-up system modeling of battery storage requirements for integrated renewable energy systems," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zenón, Eric & Rosellón, Juan, 2017. "Optimal transmission planning under the Mexican new electricity market," Energy Policy, Elsevier, vol. 104(C), pages 349-360.
    2. Lang, Lukas Maximilian & Dallinger, Bettina & Lettner, Georg, 2020. "The meaning of flow-based market coupling on redispatch measures in Austria," Energy Policy, Elsevier, vol. 136(C).
    3. Biggar, Darryl R. & Hesamzadeh, Mohammad Reza, 2022. "An integrated theory of dispatch and hedging in wholesale electric power markets," Energy Economics, Elsevier, vol. 112(C).
    4. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    5. Arcos-Vargas, A. & Nuñez, F. & Román-Collado, R., 2020. "Short-term effects of PV integration on global welfare and CO2 emissions. An application to the Iberian electricity market," Energy, Elsevier, vol. 200(C).
    6. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    7. Ruiz, Erix & Rosellón, Juan, 2012. "Transmission investment in the Peruvian electricity market: Theory and applications," Energy Policy, Elsevier, vol. 47(C), pages 238-245.
    8. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2017. "How to benefit from a common European electricity market design," Energy Policy, Elsevier, vol. 101(C), pages 629-643.
    9. Rosellón, Juan & Myslíková, Zdenka & Zenón, Eric, 2011. "Incentives for transmission investment in the PJM electricity market: FTRs or regulation (or both?)," Utilities Policy, Elsevier, vol. 19(1), pages 3-13, January.
    10. Herrmann, J.K. & Savin, I., 2017. "Optimal policy identification: Insights from the German electricity market," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 71-90.
    11. Sugimoto, Kota, 2021. "Ownership versus legal unbundling of electricity transmission network: Evidence from renewable energy investment in Germany," Energy Economics, Elsevier, vol. 99(C).
    12. Kemfert, Claudia & Kunz, Friedrich & Rosellón, Juan, 2016. "A welfare analysis of electricity transmission planning in Germany," Energy Policy, Elsevier, vol. 94(C), pages 446-452.
    13. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    14. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    15. Costa-Campi, Maria Teresa & Davi-Arderius, Daniel & Trujillo-Baute, Elisa, 2021. "Analysing electricity flows and congestions: Looking at locational patterns," Energy Policy, Elsevier, vol. 156(C).
    16. Atherton, John & Hofmeister, Markus & Mosbach, Sebastian & Akroyd, Jethro & Farazi, Feroz & Kraft, Markus, 2023. "British imbalance market paradox: Variable renewable energy penetration in energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Espinosa, Rubi & Rosellon, Juan, 2017. "Optimal Transmission Tariff Regulation for the Southern Baja-Californian Electricity Network System," MPRA Paper 98092, University Library of Munich, Germany.
    18. Weigt, Hannes, 2009. "A Review of Liberalization and Modeling of Electricity Markets," MPRA Paper 65651, University Library of Munich, Germany.
    19. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    20. Herrmann, Johannes & Savin, Ivan, 2015. "Evolution of the electricity market in Germany: Identifying policy implications by an agent-based model," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112959, Verein für Socialpolitik / German Economic Association.
    21. Leuthold, Florian & Jeske, Till & Weigt, Hannes & von Hirschhausen, Christian, 2009. "When the Wind Blows Over Europe: A Simulation Analysis and the Impact of Grid Extensions," MPRA Paper 65655, University Library of Munich, Germany.

    More about this item

    Keywords

    Transmission expansion; Electricity markets; Merchant transmission investment; Single-price mechanism; Cost-based redispatch; Transmission grid congestion;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • D42 - Microeconomics - - Market Structure, Pricing, and Design - - - Monopoly
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:104:y:2021:i:c:s014098832100476x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.